ELEMENTS OF ARCHITECTURAL STRUCTURES:

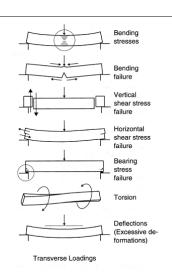
FORM, BEHAVIOR, AND DESIGN

ARCH 614 DR. ANNE NICHOLS SPRING 2014

lecture

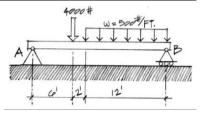
beam introduction & internal forces

Internal Beam Forces 1 Lecture 6


Elements of Architectural Structures ARCH 614

S2009abn

S2004ahn

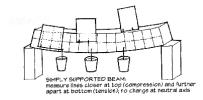

Beams

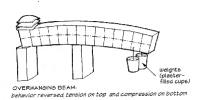
- transverse loading
- sees:
 - bending
 - shear
 - deflection
 - torsion
 - bearing
- behavior depends on cross section shape

Beams

- span horizontally
 - floors
 - bridges
 - roofs

- loaded transversely by gravity loads
- may have internal axial force
- will have internal shear force
- will have internal moment (bending)


Internal Beam Forces 4 Lecture 12


Elements of Architectural Structures

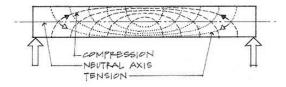
S2004abn

Beams

- bending
 - bowing of beam with loads
 - one edge surface stretches
 - other edge surface squishes

Internal Ream Forces 6

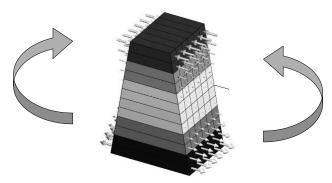
Elements of Architectural Structures ARCH 614


S2004ahr

Beam Stresses

- stress = relative force over an area
 - tensile
 - compressive ← □ Original size

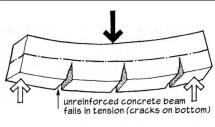
- bending
 - tension and compression + ...

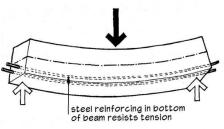


Tension (+)

Internal Beam Forces 7 Lecture 12 Elements of Architectural Structures ARCH 614 S2004abn

Beam Stresses

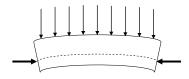

- tension and compression
 - causes moments



Copyright © 1996-2000 Kirk Martini.

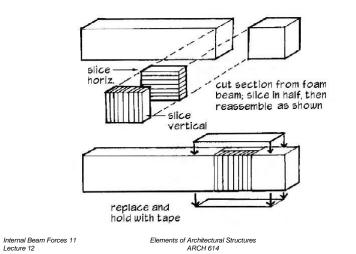
Internal Beam Forces 9 Lecture 12 Elements of Architectural Structures ARCH 614 S2004abn

Beam Stresses



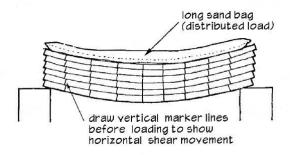
Internal Beam Forces 8 Lecture 12 Elements of Architectural Structures ARCH 614 S2004abn

Beam Stresses

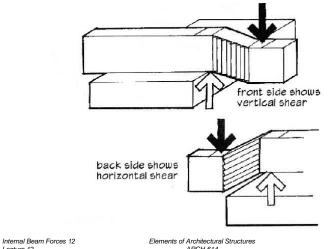

- prestress or post-tensioning
 - put stresses in tension area to "pre-compress"

Internal Beam Forces 8 Lecture 12 Elements of Architectural Structures ARCH 614 S2006abn

Beam Stresses


• shear – horizontal & vertical

Beam Stresses


Lecture 12

shear – horizontal

Beam Stresses

shear – horizontal & vertical

Lecture 12

S2004abn

S2004abn

S2004abn

Beam Deflections

- depends on
 - load
 - section
 - material

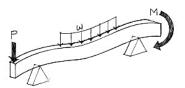
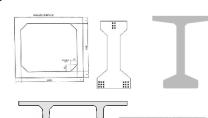
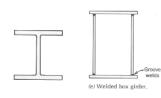


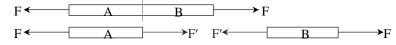
Figure 5.4 Bending (flexural) loads on a beam.


Internal Beam Forces 14

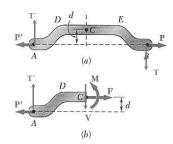
Elements of Architectural Structures ARCH 614


Beam Deflections

• "moment of inertia"


Internal Beam Forces 15 Lecture 12

Elements of Architectural Structures

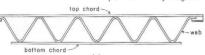

S2004abn

Internal Forces

- trusses
 - axial only, (compression & tension)

- in general
 - axial force
 - shear force, V
 - bending moment, M

Elements of Architectural Structures ARCH 614


S2004abn

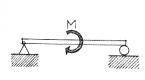
Beam Styles

vierendeel

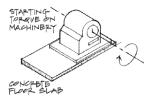
- open web joists
- manufactured

Internal Beam Forces 16 Lecture 12

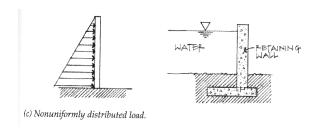
Internal Beam Forces 18


Elements of Architectural Structures ARCH 614

S2004abn

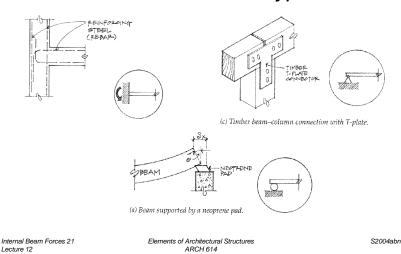

Beam Loading

- concentrated force
- concentrated moment
 - spandrel beams

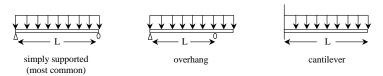


Elements of Architectural Structures

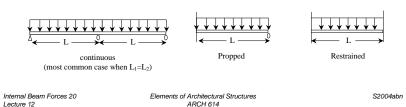
Beam Loading


- uniformly distributed load (line load)
- non-uniformly distributed load
 - hydrostatic pressure = γh
 - wind loads

Internal Beam Forces 19 Lecture 12 Elements of Architectural Structures ARCH 614 S2004abn

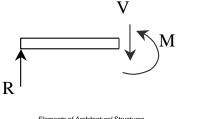

Beam Supports

• in the real world, modeled type



Beam Supports

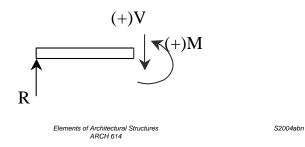
statically determinate



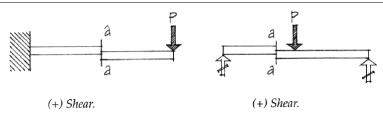
statically indeterminate

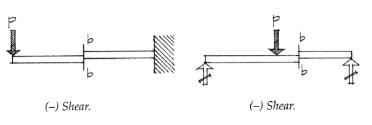
Internal Forces in Beams

- like method of sections / joints
 - no axial forces
- section must be in equilibrium
- want to know where biggest internal forces and moments are for designing



Internal Beam Forces 22

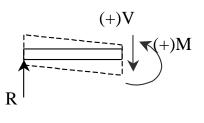

Elements of Architectural Structures ARCH 614 S2004abr


V & M Diagrams

- tool to locate V_{max} and M_{max}
- <u>necessary</u> for designing
- M_{max} occurs when V = 0

Shear Sign Convention

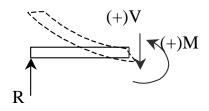
Internal Beam Forces 25 Lecture 12


Internal Beam Forces 23

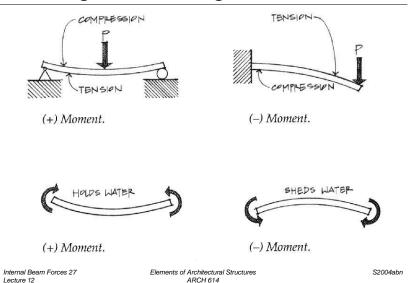
Lecture 12

Elements of Architectural Structures ARCH 614 S2004abn

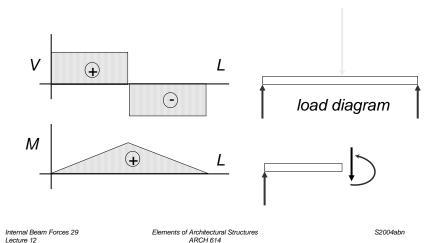
Sign Convention


- shear force, V:
 - cut section to LEFT
 - if ΣF_y is positive by statics, V acts down and is POSITIVE
 - beam has to resist shearing apart by V

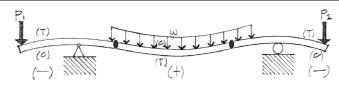
Internal Beam Forces 24 Lecture 12 Elements of Architectural Structures ARCH 614 S2004abn


Sign Convention

- bending moment, M:
 - cut section to LEFT
 - if ∑M_{cut} is clockwise, M acts ccw and is POSITIVE – flexes into a "smiley" beam has to resist bending apart by M


Internal Beam Forces 26 Lecture 12 Elements of Architectural Structures ARCH 614

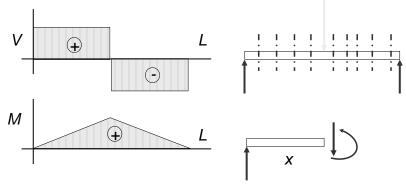
Bending Moment Sign Convention



Constructing V & M Diagrams

• along the beam length, plot V, plot M

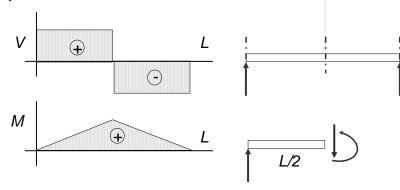
Deflected Shape



- positive bending moment
 - tension in bottom, compression in top
- negative bending moment
 - tension in top, compression in bottom
- zero bending moment
 - inflection point

Internal Beam Forces 28 Lecture 12 Elements of Architectural Structures ARCH 614 S2004abn

Mathematical Method


- · cut sections with x as width
- write functions of V(x) and M(x)

Internal Beam Forces 30 Lecture 12 Elements of Architectural Structures ARCH 614

Equilibrium Method

- · cut sections at important places
- plot V & M

Elements of Architectural Structures

ARCH 614

Equilibrium Met

relationships

Internal Beam Forces 31

Lecture 12

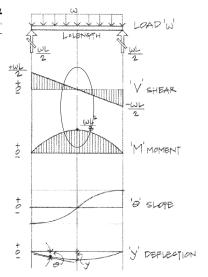



Figure 7.11 Relationship of load, shear, Elemer moment, slope, and deflection diagrams.

2006abn

S2004abn

Equilibrium Method

- important places
 - supports
 - concentrated loads
 - start and end of distributed loads
 - concentrated moments
- free ends
 - zero forces

Internal Beam Forces 32 Lecture 12 Elements of Architectural Structures ARCH 614 S2004abn

Basic Procedure

Find reaction forces & moments
 Plot axes, underneath beam load diagram

V:

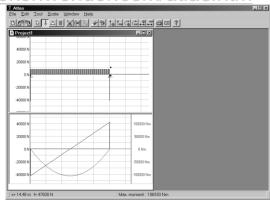
- 2. Starting at left
- 3. Shear is 0 at free ends
- 4. Shear has 2 values at point loads
- 5. Sum vertical forces at each section

Internal Beam Forces 37

Elements of Architectural Structures

S2006abn

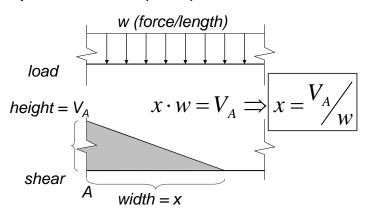
Basic Procedure


M:

- 6. Starting at left
- 7. Moment is 0 at free ends
- 8. Moment has 2 values at moments
- 9. Sum moments at each section
- 10. Maximum moment is where shear = 0!

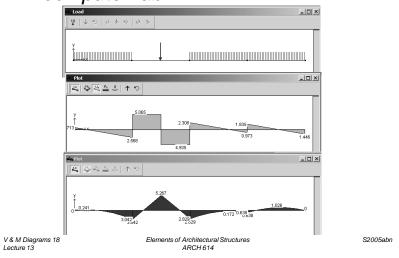
Internal Beam Forces 38 Lecture 12 Elements of Architectural Structures ARCH 614 S2006abn

Tools

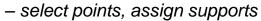

- software & spreadsheets help
- http://www.rekenwonder.com/atlas.htm

V & M Diagrams 14 Lecture 13 Elements of Architectural Structures S2004abn
ARCH 614

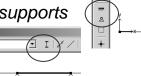
Shear Through Zero


• slope of V is w (-w:1)

Internal Beam Forces 39 Lecture 12 Elements of Architectural Structures ARCH 614 S2006abr

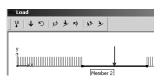

Tools - Multiframe

· in computer lab



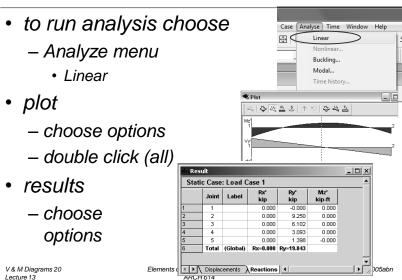
Tools - Multiframe

- frame window
 - define beam member


select members, assign <u>section</u>

₹ Frame

// N


- load window
 - select point or member,
 add point or distributed
 loads

VIEZEE BE

V & M Diagrams 19 Lecture 13 Elements of Architectural Structures ARCH 614 S2005abn

Tools - Multiframe

