ELEMENTS OF ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

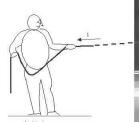
DR. ANNE NICHOLS

SPRING 2014

lecture three

Lecture 3

Flements of Architectural Structures

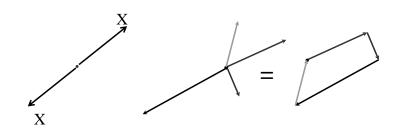

S2009abr

Equilibrium on a Point

analytically

$$R_{x} = \sum F_{x} = 0$$

$$R_{y} = \sum F_{y} = 0$$



• Newton convinces us it will stay at rest

Equilibrium

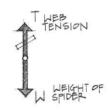
- balanced
- steady
- resultant of forces on a particle is 0

Equilibrium 2

Equilibrium 7

Elements of Architectural Structures

S2006abn


Equilibrium on a Point

collinear force system

- ex: cables

$$\sum F_{in-line} = 0$$

$$[R_x = \sum F_x = 0]$$

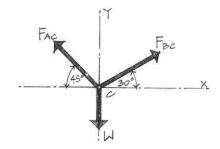
$$[R_x = \sum F_x = 0 \qquad R_y = \sum F_y = 0]$$

Equilibrium 6

Elements of Architectural Structures

S2004abn

Elements of Architectural Structures

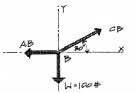

Equilibrium on a Point

concurrent force system

- ex: cables

$$R_{x} = \sum F_{x} = 0$$

$$R_y = \sum F_y = 0$$

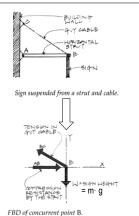


Equilibrium 8

Elements of Architectural Structures ARCH 614 S2004abn

Free Body Diagram

- FBD (sketch)
- tool to see all forces on a body or a point including
 - external forces
 - weights
 - force reactions
 - internal forces



Equilibrium 10

Elements of Architectural Structures ARCH 614 S2004abn

Free Body Diagram

- determine point
- FREE it from:
 - ground
 - supports & connections
- draw all external forces acting ON the body
 - reactions
 - (supporting forces)
 - applied forces
 - gravity

Elements of Architectural Structures ARCH 614 S2004abn

Free Body Diagram

- sketch FBD with relevant geometry
- resolve each force into components
 - known & unknown angles name them
 - known & unknown forces name them
- are any forces related to other forces?
- for the unknowns
- write only as many equilibrium equations as needed
- solve up to 2 equations

Equilibrium 12

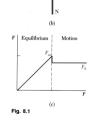
Elements of Architectural Structures ARCH 614

Free Body Diagram

- solve equations
 - most times 1 unknown easily solved
 - plug into other equation(s)
- common to have unknowns of
 - force magnitudes
 - force angles

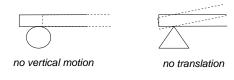
Equilibrium 10 Lecture 5

Elements of Architectural Structures ARCH 614


S2006abn

Friction

- resistance to movement
- contact surfaces determine μ
- proportion of normal force (∠)
 - opposite to slide direction
 - static > kinetic

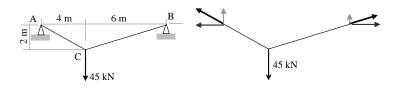


S2009abn

Elements of Architectural Structures ARCH 614

Force Reactions

- result of applying force
- unknown size
- connection or support type
 - known direction
 - related to motion prevented


Equilibrium 19

Elements of Architectural Structures ARCH 614

S2004abn

Cable Reactions

- equilibrium:
 - more reactions (4) than equations
 - but, we have slope relationships
 - X component the same everywhere

Equilibrium 28

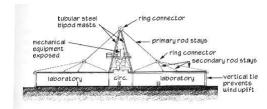
Elements of Architectural Structures ARCH 614

S2004abn

Equilibrium 11 Lecture 3

Cable-Stayed Structures

- diagonal cables support horizontal spans
- typically symmetrical
- Patcenter, Rogers 1986


Equilibrium 35 Lecture 5 Elements of Architectural Structures ARCH 614

edu :

Eq

Patcenter, Rogers 1986

- · column free space
- · roof suspended
- solid steel ties
- steel frame supports masts

Equilibrium 36 Lecture 5 Elements of Architectural Structures ARCH 614 S2005abn

Patcenter, Rogers 1986

dashes – cables pulling

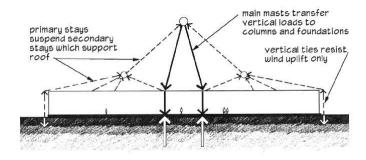


Figure 3.5: Patcenter, load path diagram.

Truss Structures

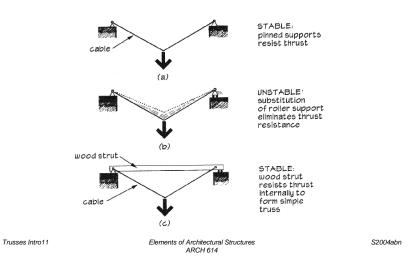
ancient (?) wood

- Romans 500 B.C.

Renaissance revival

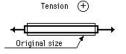
1800's analysis

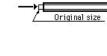
efficient


Trusses Intro10

Elements of Architectural Structures ARCH 614 S2004abn

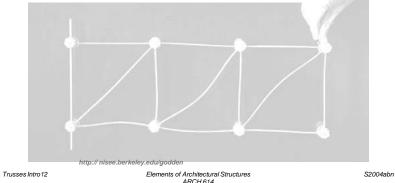
S2005ahn


Truss Structures


- analogous to cables and struts

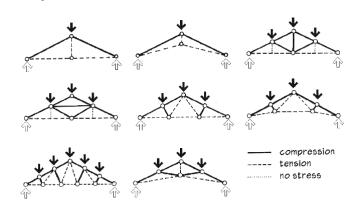
Truss Structures

- 2 force members
 - forces in line, equal and opposite
 - compression
 - tension


- 3 members connected by 3 joints
- 2 more members need 1 more joint b = 2n - 3

S2004abn

Compresssion (-)

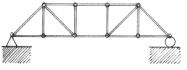

Truss Structures

- comprised of straight members
- geometry with triangles is stable
- · loads applied only at pin joints

Truss Structures

compression and tension

Trusses Intro14


Elements of Architectural Structures

Truss Structures

- statically determinate
- indeterminate
- unstable

b = 21(a) Determinate. $n = 12 \ 2(n) - 3 = 2(12) - 3 = 21$

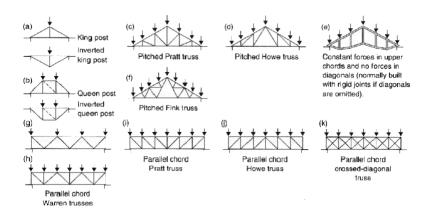
n = 10 b = 16 < 2(10) - 3 = 17(Too few members-square panel is unstable)

n = 10 b = 18 > 2(10) - 3 = 17(Too many members)

(c) Unstable.

(b) Indeterminate.

Trusses Intro15

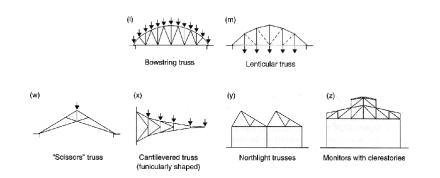

Trusses Intro17

Elements of Architectural Structures

S2004abn

Trusses

common designs

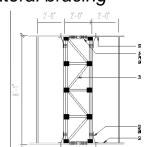

Trusses Intro16

Elements of Architectural Structures ARCH 614

S2004abn

Trusses

common designs

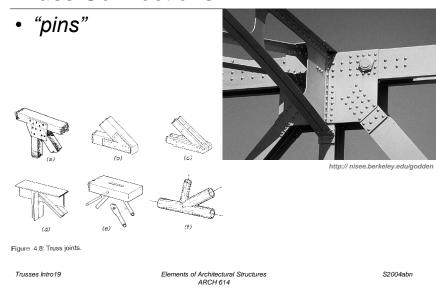


Elements of Architectural Structures ARCH 614

S2004abn

Trusses

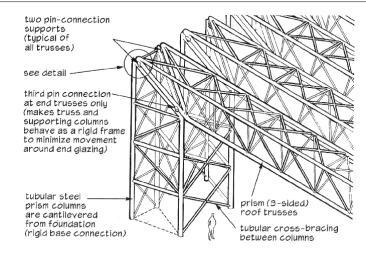
- uses
 - roofs & canopies
 - long spans
 - lateral bracing




Trusses Intro18

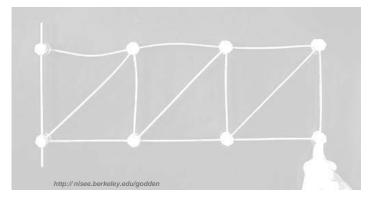
Elements of Architectural Structures ARCH 614

Truss Connections


Sainsbury Center, Foster 1978

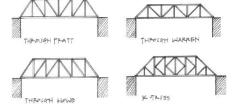
Trusses Intro20 Elements of Architectural Structures \$2004abn ARCH 614

Sainsbury Center, Foster 1978


Trusses Intro21

Elements of Architectural Structures S2004abn
ARCH 614

Truss Analysis

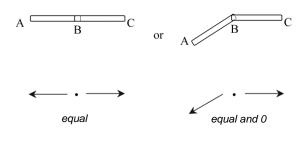

 visualize compression and tension from deformed shape

Trusses Intro 22 Lecture 6 Elements of Architectural Structures ARCH 614 S2005abn

Truss Analysis

- · Method of Joints
- Graphical Methods
- Method of Sections

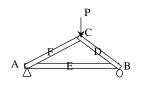
- all rely on equilibrium
 - of bodies
 - internal equilibrium



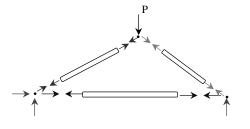
Trusses Intro22

Elements of Architectural Structures ARCH 614 S2004abn

Joint Cases


· two bodies connected

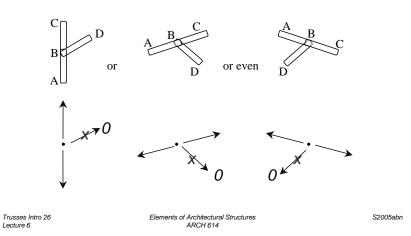
Elements of Architectural Structures ARCH 614 S2005abn


Method of Joints

- isolate each joint
- enforce equilibrium in F_x and F_y

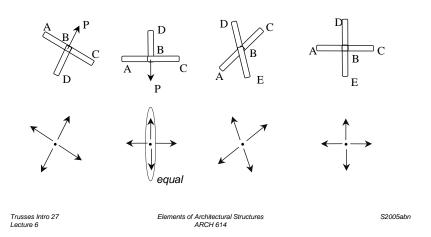
· can find all forces

- long
- · easy to mess up



Trusses Intro23

Elements of Architectural Structures ARCH 614 S2004abn


Joint Cases

· three bodies with two in line

Joint Cases

crossed

Tools - Multiframe

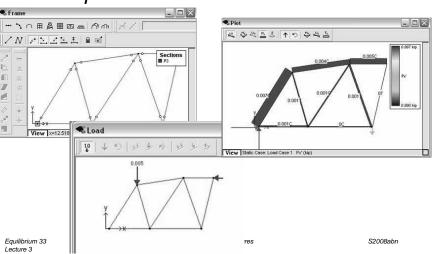
frame window

- define truss members

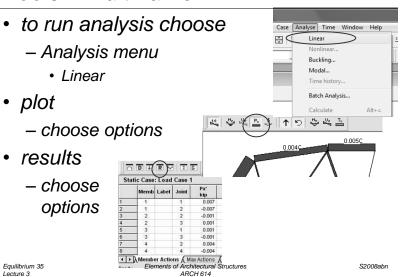
· or pre-defined truss

- select points, assign supports

- select members, assign section & assign pin ends


- load window

- select points, add point load Equilibrium 34


ZNIZEZEEL 10 1 5 5 5 6 6 7 5 5 5 Elements of Architectural Structures S2008abn ARCH 614

Tools - Multiframe

in computer lab

Tools - Multiframe

