ELEMENTS OF ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

DR. ANNE NICHOLS SPRING 2014

concrete construction: flat spanning systems

Lecture 24

ARCH 614

S2009abr

Reinforced Concrete Design

- flat plate
 - 5"-10" thick
 - simple formwork
 - lower story heights

- flat slab
 - same as plate
 - 2 1/4"-8" drop panels

Reinforced Concrete Design

- economical & common
- resist lateral loads

Reinforced Concrete Design

- beam supported
 - slab depth ~ L/20
 - -8"-60" deep

The Architect's Studio Companion

- 8"-20" stems
- 5"-7" webs

Concrete Spans 4

Lecture 24

one-way joists

- 3"-5" slab

Concrete Spans 3 ARCH 614 S2007abn

Flements of Architectural Structures ARCH 614

Reinforced Concrete Design

- two-way joist
 - "waffle slab"
 - 3"-5" slab
 - 8"-24" stems
 - 6"-8" webs
- beam supported slab
 - 5"-10" slabs
 - taller story heights

Concrete Spans 5 Lecture 24

Elements of Architectural Structures

S2007abn

S2007abn

Reinforced Concrete Design

- one-way slabs (wide beam design)
 - approximate analysis for moment & shear coefficients
 - two or more spans
 - ~ same lengths
 - w,, from combos
- Uniformly Distributed Load (L/D ≤ 3) -Figure 2-2 Conditions for Analysis by Coefficients (ACI 8.3.3)
- uniform loads with $L/D \le 3$
- $-\ell_n$ is clear span (+M) or average of adjacent clear spans (-M)

Reinforced Concrete Design

- simplified frame analysis
 - strips, like continuous beams
- moments require flexural reinforcement
 - top & bottom
 - both directions of slab
 - continuous, bent or discontinuous

Concrete Spans 6 Lecture 24

Elements of Architectural Structures

S2007abn

Reinforced Concrete Design

Figure 2-4 Negative Moments—Beams and Slabs

Shear in Concrete

at columns

 want to avoid stirrups

 can use shear studs or heads

Concrete Spans Lecture 24

Shear in Concrete

- critical section at d/2 from
 - column face, column capital or drop panel

Shear in Concrete

· at columns with waffle slabs

Openings in Slabs

- · careful placement of holes
- shear strength reduced
- bending & deflection can increase

Concrete Spans 12 Lecture 24 Elements of Architectural Structures ARCH 614

General Beam Design

- f'_c & f_y needed
- usually size just b & h
 - even inches typical (forms)
 - similar joist to beam depth
 - b:h of 1:1.5-1:2.5
 - $-b_w \& b_f$ for T
 - to fit reinforcement + stirrups
- slab design, t

Concrete Spans 13

Lecture 24

- deflection control & shear

S2007abn

Elements of Architectural Structures

General Beam Design (cont'd)

- custom design:
 - longitudinal steel
 - shear reinforcement
 - detailing

Concrete Spans 14 Lecture 24 Elements of Architectural Structures ARCH 614