**E**LEMENTS OF ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

DR. ANNE NICHOLS SPRING 2014

lecture



Copyright © Kirk Martini

# concrete construction: shear & deflection

Concrete Shear 1 Lecture 23

Flements of Architectural Structures

\$2009ahn

#### ACI Shear Values

- *V<sub>u</sub>* is at distance d from face of support
- shear capacity:

$$V_c = v_c \times b_w d$$

- where b<sub>w</sub> means thickness of web at n.a.



Concrete Shear 3

Elements of Architectural Structures ARCH 614

S2007abn

#### Shear in Concrete Beams

- flexure combines with shear to form diagonal cracks
- horizontal reinforcement doesn't help
- stirrups = vertical reinforcement



Concrete Shear 2 Lecture 23

Flements of Architectural Structures ARCH 614

S2007abn

#### ACI Shear Values

shear stress (beams)

$$- v_c = 2\sqrt{f'_c} \qquad \phi = 0.75 \text{ fo}$$

$$\phi V_c = \phi 2\sqrt{f'_c} b_w d \qquad f'_c \text{ is in } \underline{psi}$$

 $\phi = 0.75$  for shear

shear strength:

$$V_u \leq \phi V_c + \phi V_s$$

- V<sub>s</sub> is strength from stirrup reinforcement



Figure 13.17 Consideration for spacing of a single stirrup.

Concrete Shear 4 Lecture 23

Elements of Architectural Structures ARCH 614

### Stirrup Reinforcement

shear capacity:

$$V_s = \frac{A_v f_y d}{s}$$

- $-A_{v}$  = area in all legs of stirrups
- -s = spacing of stirrup
- may need stirrups when concrete has enough strength!

Concrete Shear 5

Elements of Architectural Structures ARCH 614 S2007abn

#### Torsional Stress & Strain

- can see torsional stresses & twisting of axi-symmetrical cross sections
  - torque
  - remain plane
  - undistorted
  - rotates
- not true for square sections....



S2007abn

### Required Stirrup Reinforcement

#### · spacing limits

Table 3-8 ACI Provisions for Shear Design\*

|                                              | - 1276 , Right                      | $V_u \le \frac{\phi V_c}{2}$ | $\phi V_C \ge V_U > \frac{\phi V_C}{2}$           | $V_u > \phi V_c$                                                                               |
|----------------------------------------------|-------------------------------------|------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------|
| Required area of stirrups, A <sub>V</sub> ** |                                     | none                         | 50b <sub>w</sub> s                                | $\frac{(V_u - \phi V_c)s}{\phi f_y d}$                                                         |
| Stirrup spacing, s                           | Required                            |                              | A <sub>V</sub> f <sub>y</sub><br>50b <sub>w</sub> | $\frac{\phi A_v f_y d}{V_u - \phi V_c}$                                                        |
|                                              | Recommended<br>Minimum <sup>†</sup> | =                            | <u>.</u>                                          | 4 in.                                                                                          |
|                                              | Maximum††<br>(ACl 11.5.4)           | _                            | d/2 or 24 in.                                     | $\frac{d}{2}$ or 24 in, for $\left(V_{u} - \phi V_{c}\right) \le \phi 4 \sqrt{t_{c}'} b_{w} d$ |
|                                              |                                     |                              | 4000                                              | $\frac{d}{4}$ or 12 in. for $(V_u - \phi V_c) > \phi 4 \sqrt{f_c'} b_w d$                      |

<sup>\*</sup>Members subjected to shear and flexure only;  $\phi V_C = \phi 2 \sqrt{f_C'} b_w d$ ,  $\phi = \frac{8.85}{0.00}$  (ACI 11.3.1.1)

\*\*A<sub>v</sub> = 2 × A<sub>b</sub> for U stirrups;  $f_v \le 60$  ksi (ACI 11.5.2)

0.75

Concrete Shear 6 Lecture 23

Concrete Shear 8

Lecture 23

Elements of Architectural Structures ARCH 614 S2007abn

#### Shear Stress Distribution



•  $\phi$  = angle of twist

measure

 can prove planar section doesn't distort



r=RADIUS



Elements of Architectural Structures
ARCH 614

S2007abn

Concrete Shear 7 Lecture 23 Elements of Architectural Structures ARCH 614

<sup>†</sup>A practical limit for minimum spacing is d/4

<sup>††</sup>Maximum spacing based on minimum shear reinforcement (= A<sub>v</sub>f<sub>v</sub>/50b<sub>w</sub>) must also be considered (ACI 11.5.5.3).

# Shearing Strain

• related to  $\phi$ 

$$\gamma = \frac{\rho \phi}{L}$$

- $\rho$  is the radial distance from the centroid to the point under strain
- shear strain varies linearly along the radius:  $\gamma_{max}$  is at outer diameter



Concrete Shear 9 Lecture 23

Elements of Architectural Structures ARCH 614

# Torsional Stress - Strain

- know  $f_v = \tau = G \cdot \gamma$  and  $\gamma = \frac{\rho \phi}{I}$
- so  $\tau = \mathbf{G} \cdot \frac{\rho \phi}{I}$
- where G is the Shear Modulus

Concrete Shear 10 Lecture 23

Flements of Architectural Structures ARCH 614

S2007abr

#### Torsional Stress - Strain

• from

$$T = \Sigma \tau(\rho) \Delta A$$

can derive



- where J is the polar moment of inertia

elastic range

$$au = \frac{T\rho}{J}$$



S2007abn

Shear Stress

- τ<sub>max</sub> happens at <u>outer diameter</u>
- combined shear and axial stresses
  - maximum shear stress at 45° "twisted" plane







Concrete Shear 11

Elements of Architectural Structures ARCH 614

Concrete Shear 12 Lecture 23

Elements of Architectural Structures ARCH 614

#### Shear Strain

• knowing 
$$\tau = G \cdot \frac{\rho \phi}{L}$$
 and  $\tau = \frac{T\rho}{J}$ 

• solve: 
$$\phi = \frac{TL}{JG}$$

• composite shafts: 
$$\phi = \sum_{i} \frac{T_{i}L_{i}}{J_{i}G_{i}}$$

Concrete Shear 13 Lecture 23 Elements of Architectural Structures ARCH 614 S2007abn

### Open Thin-Walled Sections

• with very large a/b ratios:

$$au_{\text{max}} = \frac{T}{\frac{1}{3}ab^2} \qquad \phi = \frac{TL}{\frac{1}{3}ab^3G}$$

Concrete Shear 15

Elements of Architectural Structures ARCH 614 S2007abn

#### Noncircular Shapes

- torsion depends on J
- plane sections don't remain plane



$$\tau_{\text{max}} = \frac{T}{c_1 a b^2} \quad \phi = \frac{TL}{c_2 a b^3 G}$$

– where a is longer side (> b)

TABLE 3.1. Coefficients for Rectangular Bars in Torsion

| nectangular bars ili loision |                       |        |  |  |  |
|------------------------------|-----------------------|--------|--|--|--|
| a/b                          | <b>c</b> <sub>1</sub> | C 2    |  |  |  |
| 1.0                          | ° 0.208               | 0.1406 |  |  |  |
| 1.2                          | 0.219                 | 0.1661 |  |  |  |
| 1.5                          | 0.231                 | 0.1958 |  |  |  |
| 2.0                          | 0.246                 | 0.229  |  |  |  |
| 2.5                          | 0.258                 | 0.249  |  |  |  |
| 3.0                          | 0.267                 | 0.263  |  |  |  |
| 4.0                          | 0.282                 | 0.281  |  |  |  |
| 5.0                          | 0.291                 | 0.291  |  |  |  |
| 10.0                         | 0.312                 | 0.312  |  |  |  |
|                              |                       |        |  |  |  |

Elements of Architectural Structures ARCH 614 S2007abn

#### Shear Flow in Closed Sections

• q is the internal shear force/unit length

$$\tau = \frac{I}{2t\mathcal{Q}}$$

$$\phi = \frac{TL}{4t\mathcal{Q}^2} \sum_{i} \frac{s_i}{t_i}$$



- ${\it \Omega}$  is the area bounded by the centerline
- $s_i$  is the length segment,  $t_i$  is the thickness

Concrete Shear 16 Lecture 23

Concrete Shear 14

Lecture 23

Elements of Architectural Structures ARCH 614

### Shear Flow in Open Sections

• each segment has proportion of T with respect to torsional rigidity,

$$\tau_{\text{max}} = \frac{Tt_{\text{max}}}{\frac{1}{3} \Sigma b_i t_i^3}$$



• total angle of twist:

$$\phi = \frac{TL}{\frac{1}{3}G\Sigma b_i t_i^3}$$



• I beams - web is thicker, so  $\tau_{\max}$  is in <u>web</u>

Concrete Shear 17 Lecture 23

### Torsional Shear Reinforcement

- closed stirrups
- more longitudinal reinforcement



Fig. R11.6.3.6(a)-Space truss analogy

area enclosed by shear flow



Fig. R11.6.3.6(b)-Definition of Aoh

S2007abr

#### Torsional Shear Stress

- twisting moment
- and beam shear





(a) Hollow section





(b) Solid section

Fig. R11.6.3.1-Addition of torsional and shear stresses

Concrete Shear 18 Lecture 23

Elements of Architectural Structures

ARCH 614

S2007abn

(d)

# Development Lengths

- required to allow steel to yield (f<sub>v</sub>)
- standard hooks
  - moment at beam end





Concrete Shear 20 Elements of Architectural Structures Lecture 23

### Development Lengths

- $l_d$ , embedment required <u>both</u> sides
- proper cover, spacing:
  - No. 6 or smaller

$$l_d = \frac{d_b F_y}{25\sqrt{f_c'}}$$
 or 12 in. minimum

No. 7 or larger

$$l_d = \frac{d_b F_y}{20\sqrt{f_c'}}$$

Lecture 23

ARCH 614

S2009abn

### Development Lengths

bars in compression

$$l_d = \frac{0.02 d_b F_y}{\sqrt{f_c'}} \le 0.0003 d_b F_y$$

- - tension minimum is function of  $l_d$  and splice classification
  - compression minimum
  - is function of  $d_b$  and  $F_v$



S2009abr

## Development Lengths

- hooks
  - bend and extension





Figure 9-17: Minimum requirements for 90° bar hooks.

Figure 9-18: Minimum requirements for 180° bar hooks.

minimum

$$l_{dh} = \frac{1200 \, d_b}{\sqrt{f_c'}}$$

Concrete Shear 22 Lecture 23

Elements of Architectural Structures ARCH 614

S2009abn

#### Concrete Deflections

- elastic range
  - I transformed
  - $-E_c$  (with  $f_c$  in psi)
    - normal weight concrete (~ 145 lb/ft<sup>3</sup>)  $E_c = 57,000\sqrt{f_c}$



concrete between 90 and 160 lb/ft<sup>3</sup>

$$E_c = w_c^{1.5} 33 \sqrt{f_c'}$$

- - I cracked
  - E adjusted

Concrete Shear 21 Lecture 23

Elements of Architectural Structures

### **Deflection Limits**

- relate to whether or not beam supports or is attached to a damageable nonstructural element
- need to check <u>service</u> live load and long term deflection against these

| L/180 | roof systems (typical) – live              |
|-------|--------------------------------------------|
| L/240 | floor systems (typical) – live + long term |
| L/360 | supporting plaster – live                  |
| L/480 | supporting masonry – live + long term      |

Concrete Shear 22 Lecture 23 Elements of Architectural Structures ARCH 614