ELEMENTS OF **A**RCHITECTURAL **S**TRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 614

DR. ANNE NICHOLS

SPRING 2014

lecture twenty

nrmc.org

Steel Welding 1 Lecture 20

Elements of Architectural Structures ARCH 614 S2009abn

Welded Connection Design

- · considerations
 - shear stress
 - yielding
 - rupture

Steel Welding 3

Elements of Architectural Structures ARCH 614

S2007abn

Welds

· welded steel connections

Elements of Architectural Structures ARCH 614

http://courses.civil.ualberta.ca

S2007abn

Welded Connection Design

weld terms

Steel Welding 2

Lecture 20

- butt weld
- fillet weld
- plug weld
- throat
- field welding
- shop welding

Steel Welding 4 Lecture 20 Elements of Architectural Structures ARCH 614 S2007abn

Welded Connection Design

- weld process
 - melting of material
 - melted filler electrode
 - shielding gas / flux
 - potential defects
- weld materials
 - F60XX
 - E70XX

 $F_{FXX} = 70 \text{ ksi}$

Steel Welding 5 Lecture 20

Elements of Architectural Structures ARCH 614

S2007abn

S2007ahr

Welded Connection Design

- minimum
 - table
- maximum
 - material thickness (to 1/4")
 - 1/16" less
- min. length
 - 4 x size min.
 - -≥1½"

THROAT = , 707 x WELD SIZE - CONVEX CONCAVE

Welded Connection Design

- · shear failure assumed
- throat
 - -T = 0.707 x weld size
- area
 - -A = Tx length of weld
- weld metal generally stronger than base metal (ex. $F_v = 50$ ksi)

Steel Welding 6 Lecture 20

Flements of Architectural Structures ARCH 614

S2007abn

Welded Connection Design

shear

$$R_a \leq \frac{R_n}{\Omega}$$
 $R_u \leq \phi R_n$
 $\phi = 0.75$

$$R_n = 0.6F_{EXX}Tl = Sl$$
 area

– table for ϕ S

Available	Strength of Fil	let Welds
pe	r inch of weld (φS')
Weld Size	E60XX	E70XX
(in.)	(k/in.)	(k/in.)
¾6	3.58	4.18
1/4	4.77	5.57
5/16	5.97	6.96
3/8	7.16	8.35
1/16	8.35	9.74
1/2	9.55	11.14
5/8	11.93	13.92
3/4	14.32	16.70

(not considering increase in throat with submerged arc weld process)

Elements of Architectural Structures

Steel Welding 8 Lecture 20

Elements of Architectural Structures ARCH 614

S2009abn

Framed Beam Connections

welded example (shear)

(AISC - Steel Structures of the Everyday)

Steel Welding 9 Lecture 20 Elements of Architectural Structures

S2007abn

Framed Beam Connections

• welded/bolted moment example

(AISC - Steel Structures of the Everyday)

Elements of Architectural Structures ARCH 614 S2007abn

Framed Beam Connections

welded moment example

(AISC - Steel Structures of the Everyday)

Steel Welding 10 Lecture 20 Elements of Architectural Structures ARCH 614 S2007abn

Framed Beam Connections

• welded/bolted moment example

(AISC - Steel Structures of the Everyday)

Steel Welding 12 Lecture 20 Elements of Architectural Structures ARCH 614 S2007abn

Steel Welding 11 Lecture 20

Light-gage Steel

- sheet metal
 - shaped
 - studs, panels, window frames
 - gage
 - · based on weight of 41.82 lb/ft² / inch of thickness
 - 24, 22, 18, 16, i.e.
 - 0.0239, 0.0329, 0.0474, 0.0598 in
 - 0.6, 0.85, 1.0, 1.3, 1.6 mm

Steel Welding 13 Lecture 20

Steel Welding 15

Elements of Architectural Structures ARCH 614

S2007abn

http://nisee.berkeley.edu/godden

Steel Decks

load tables

VERTICAL LOADS FOR TYPE 3N

		Max.	Allowable Total (Dead + Live) Uniform Load (PSF)										
No. of	Deck	SDI Const.	Span (ftin.) C. to C. of Support										
Spans	Type	Span	10'-0	10'-6	11'-0	11'-6	12'-0	12'-6	13'-0	13'-6	14'-0	14'-6	15'-0
	N22	11'-7	51	46	42	38	35	32	30	28	26	24	23
	N21	12'-5	59	53	47	43	39	36	33	30	28	26	25
	N20	13'-2	66	58	52	47	42	38	35	33	30	28	26
1	N19	14'-7	79	69	61	55	50	45	41	38	35	32	30
	N18	15'-11	91	80	71	63	57	52	47	43	40	37	34
	N16	18'-6	119	105	93	83	74	66	60	55	50	46	43
	N22	14'-9	58	52	48	44	40	37	34	32	29	27	26
	N21	15'-9	66	60	55	50	46	42	39	36	34	32	29
	N20	16'-6	74	67	61	56	51	47	44	40	38	35	33
2	N19	18'-1	88	80	73	66	61	56	52	48	45	42	39
	N18	19'-5	100	91	83	76	69	64	59	55	51	47	44
	N16	22'-3	126	114	104	95	87	81	74	69	64	60	56
	N22	14'-9	70	65	60	55	50	46	43	40	37		
	N21	15'-9	83	75	68	63	58	53	49	45	42		
	N20	16'-6	92	83	76	70	64	59	54	50	47		
3	N19	18'-1	110	100	91	83	76	70	65	60	56		
	N18	19'-5	125	113	103	94	87	80	74	68	64		
	N16	22'-3	157	143	130	119	109	101	93	86	80		

Load tables are calculated using sectional properties based on the steel design thickness shown in the Steel Deck Institute (SDI) Design Manual.

- Loads shown in the shaded areas are governed by the live load deflection not in excess of 1/240 of the spar A dead load of 10 PSF has been included.

3. 3N, NI, NA, NIA are not covered under Factory Mutual

Elements of Architectural Structures ARCH 614

S2007abn

Steel Decks

- "Texas" style
 - corrugated
- common
 - -1-3 spans
 - can be insulated
 - composite
 - · with concrete

Elements of Architectural Structures

S2007abn

Steel Decks

Steel Welding 14

Lecture 20

- common fire proofing
 - cementicious spray
 - composite concrete
- non-composite
 - concrete is fill
- lateral bracing
- diaphragm action

Steel Welding 16

Elements of Architectural Structures ARCH 614

S2007abn