
ELEMENTS OF ARCHITECTURAL STRUCTURES:

FORM. BEHAVIOR. AND DESIGN

DR. ANNE NICHOLS SPRING 2014

lecture

loads, forces and vectors

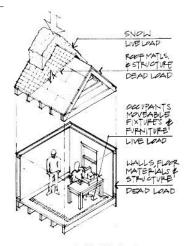
Lecture 2

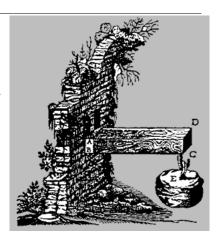
Flements of Architectural Structures ARCH 614

S2009ahn

Structural Loads

- STATIC and DYNAMIC
- dead load
 - static, fixed, includes building weight, fixed equipment
- live load
 - transient and moving loads (including occupants), snowfall




Figure 1.12 Typical building loads.

Elements of Architectural Structures ARCH 614

S2005abn

Structural Design

- planning
- · preliminary structural configuration
- determination of loads
- preliminary member selection
- analysis
- evaluation
- design revision
- final design

Elements of Architectural Structures

S2005abr

Structural Loads

wind loads

dynamic, wind pressures treated as lateral static loads on walls, up or down loads on

roofs

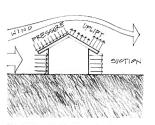


Figure 1.13 Wind loads on a structure

Elements of Architectural Structures ARCH 614

S2005abr

Forces 7

Lecture 3

Structural Loads

earthquake loads

seismic, movement of ground 1 ←→

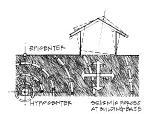
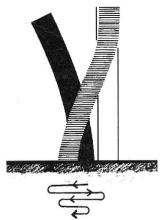
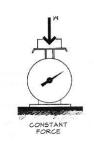
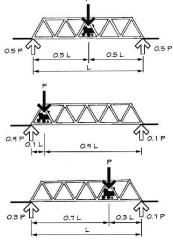



Figure 1.14 Earthquake loads on a structure.



Flements of Architectural Structures ARCH 614


S2005abr

Structural Loads

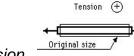
- impact loads
 - rapid, energy loads

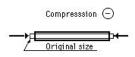
Forces 9

Elements of Architectural Structures ARCH 614

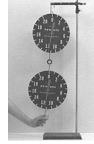
S2005abr

Forces


Forces 8


Lecture 3

- statics
 - physics of forces and reactions on bodies and systems
 - equilibrium (bodies at rest)
- forces
 - something that exerts on an object:



compression

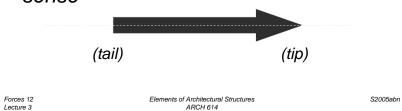
Forces

- "action of one body on another that affects the state of motion or rest of the body"
- Newton's 3rd law:
 - for every force of action there is an equal and opposite reaction along the same line

http:// nisee.berkelev.edu/godder.

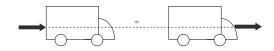
Forces 10 Lecture 3

Elements of Architectural Structures ARCH 614


S2005abn

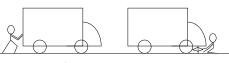
Forces 11

Elements of Architectural Structures ARCH 614


Force Vectors

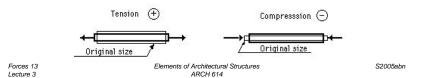
- · applied at a point
- magnitude
 - Imperial units: lb, k (kips)
 - SI units: N (newtons), kN
- direction
- sense

Transmissibility

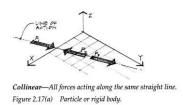

- the force stays on the same line of action
- truck can't tell the difference

· only valid for EXTERNAL forces

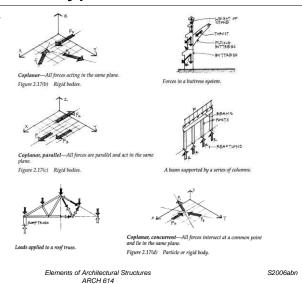
Forces on Rigid Bodies


- · for statics, the bodies are ideally rigid
- can translate and rotate

- internal forces are
- translate **ç**


rotate

- in bodies
- between bodies (connections)
- external forces act on bodies


Force System Types

collinear

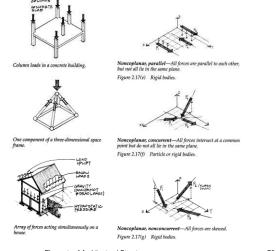
Force System Types

coplanar

Adding Vectors

- graphically
 - parallelogram law
 - diagonal
 - · long for 3 or more vectors

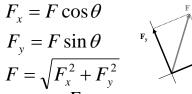
S2005abr


- tip-to-tail
 - more convenient with lots of vectors

Forces 18 Elements of Architectural Structures Lecture 3 ARCH 614

Force System Types

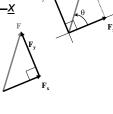
space

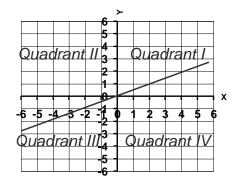


Elements of Architectural Structures ARCH 614

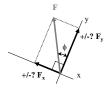
S2005abn

Force Components


- convenient to resolve into 2 vectors
- · at right angles
- in a "nice" coordinate system
- θ is between F_x and F from F_x



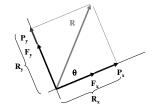
Trigonometry


- F_x is negative
 - 90° to 270
- F_y is negative
 - 180° to 360
- tan is positive
 - quads I & III
- tan is negative
 - quads II & IV

Forces 20 Lecture 3 Elements of Architectural Structures ARCH 614 S2005abr

Alternative Trig for Components

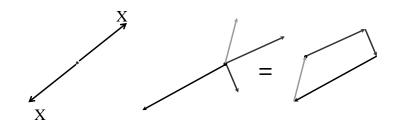
- doesn't relate angle to axis direction
- ϕ is "small" angle between F and EITHER F_x or F_v
- no sign out of calculator!
- have to choose RIGHT trig function, resulting direction (sign) and component axis



Component Addition

- find all x components
- find all y components
- find sum of x components, R_x (resultant)
- find sum of y components, R_y

$$R = \sqrt{R_x^2 + R_y^2}$$


$$\tan \theta = \frac{R_y}{R_x}$$

Forces 21 Lecture 3 Elements of Architectural Structures ARCH 614 S2005abr

Static Equilibrium

- balanced & steady
- no motion or translation
- equilibrant is opposite resultant

Equilibrium 2 Lecture 5 Elements of Architectural Structures ARCH 614 S2006abn

Cables

- simple
- uses
 - suspension bridges
 - roof structures
 - transmission lines
 - guy wires, etc.

http://nisee.berkeley.ed/ugodden

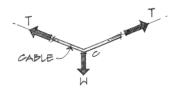
- · have same tension all along
- can't stand compression

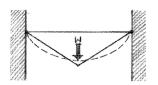
Equilibrium 29 Lecture 5 Elements of Architectural Structures

S2005abn

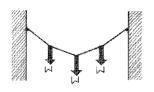
Lecture 5

Elements of Architectural Structures ARCH 614 S2006abn


http:// nisee.berkelev.edu/godder.


OLDEN GATE BRIDGE

MAIN SPAN 4200 FT.


Cable Loads

- straight line between forces
- · with one force
 - concurrent
 - symmetric

(a) Simple concentrated load—triangle.

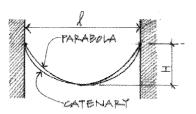
(b) Several concentrated loads—polygon.

Cable Loads

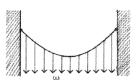
 shape directly related to the distributed load

Cables Structures

need


Equilibrium 24

- towers

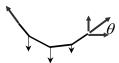

- anchors

· use high-strength steel

don't want movement

(e) Comparison of a parabolic and a catenary curve.

c) Uniform loads (horizontally)—parabola.


(d) Uniform loads (along the cable length)—catenary.

Equilibrium 31 Lecture 5 Elements of Architectural Structures ARCH 614 S2005abn

Equilibrium 32 Lecture 5 Elements of Architectural Structures ARCH 614

Cable Loads

• trig:
$$T_x = T \cos \theta$$

 $T_y = T \sin \theta$

- parabolic (catenary)
 - distributed uniform load

$$y = 4h(Lx - x^{2})/L^{2}$$

$$L_{total} = L(1 + \frac{8}{3}h^{2}/L^{2} - \frac{32}{5}h^{4}/L^{4})$$

Equilibrium 33

Elements of Architectural Structures ARCH 614