ELEMENTS OF ARCHITECTURAL STRUCTURES:

FORM. BEHAVIOR. AND DESIGN

ARCH 614 DR. ANNE NICHOLS **S**PRING 2014

steel construction: bolts & tension members

Steel Bolts Lecture 19

Elements of Architectural Structures ARCH 614

Bolts

 bolted steel connections ---------http://courses.civil.ualberta.ci Elements of Architectural Structures of the Everyday) Steel Bolts 3 S2009abn ARCH 614 Lecture 19

Connections

- needed to:
 - support beams by columns
 - connect truss members
 - splice beams or columns
- transfer load
- subjected to
 - tension or compression
 - shear
 - bending

(a) Framed beam (shear) connection.

 $e = Eccentricity: M = P \times e$

(b) Moment connection (rigid frame). M = Moment due to beam bending

Steel Bolts 2 Lecture 19

S2009abn

Elements of Architectural Structures ARCH 614

S2007abr

igh-strength bol

Plate R

Threaded portion

Free body plate B

Free bod

T = tensile force

 $\mu = coefficient of friction$ $P = \mu T$

Bolts

- types
 - materials
 - high strength
 - A307, A325, A492
 - location of threads
 - included
 - excluded
 - friction or bearing
 - · always tightened

Steel Bolts 4

Lecture 19

Elements of Architectural Structures ARCH 614

Bolts

Bolts

- rarely fail in bearing
- holes considered 1/8" larger
- shear & tension $R_a \leq \frac{R_n}{\Omega} R_u \leq \phi_v R_n$
 - single shear or tension
 - double shear

$$R_n = F_n A_b$$
$$R_n = F_n 2A_b$$

 $D = E \Lambda$

Steel Bolts 6 Lecture 19 Elements of Architectural Structures ARCH 614 S2012abn

 $\phi_{v} = 0.75$

Bolts

- bearing (ϕ_x) $R_a \leq \frac{R_n}{\Omega}$ $R_u \leq \phi R_n$ $\phi = 0.75$
 - deformation is concern

 $R_n = 1.2L_c tF_u \le 2.4 dtF_u$

- deformation isn't concern

$$R_n = 1.5L_c tF_u \le 3.0dtF_u$$

– long slotted holes

 $R_n = 1.0L_c tF_u \le 2.0dtF_u$

 L_c – clear length to edge or next hole (ex. 1¹/₄", 3")

Steel Bolts 9 Lecture 19

S2012abn

Elements of Architectural Structures ARCH 614

Table 7-5 Available Bearing Strength at Bolt Holes Based on Edge Distance												Table 7-3 (continued) Slip-Critical Connections Available Shear Strength, kips								Group B Bolts	
		-	R.I	J 5/III.	unce	mess							(C	lass A	Fayir	ng Sur	face,	μ = 0.	30)		
Hole Type	Edge Distance L _e , in.	F _o ksi	Nominal Bolt Diameter, d, in.								-							810-			_
			5/8		3/4		7/8		1		Group B Bolts										
			$r_n/\Omega = \phi r_n$		r _p /Ω or _p		r_n/Ω	¢fa	r_0/Ω	¢r _a				Nominal Bolt Diameter, d, in.							
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			Loading	4	⁵ /8 ³ /4		4	7/8		1	
STD SSLT	11/4 2	58 65 58	31.5	47.3	29.4	44.0	27.2	40.8	25.0	37.5		Hale Tons		Minimum Group B Bolt Pretension, kips							
			43.5	65.3	52.9	78.3	53.3	79.9	51.1	42.0	10	an .15c		2	4	1	35	4	9	3	54
		65	48.8	73.1	58.5	87.8	59.7	89.6	57.3	85.9		-		r_0/Ω	¢fa	I_0/Ω	Qfa	re/Ω	¢fg	t_0/Ω	Q.F.
SSLP	11/4	58	28.3	42.4	26.1	39.2	23.9	35.9	20.7	31.0				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRF
	2	58 65	43.5	47.5 65.3 73.1	52.2 58.5	78.3	50.0 56.1	40.2 75.0 84.1	46.8	70.1	ST	TD/SSLT	S D	5.42 10.8	8.14 16.3	7.91 15.8	11.9	11.1	16.5	14.5	21.7
ovs	11/4	58 65	29.4 32.9	44.0 49.4	27.2 30.5	40.8	25.0 28.0	37.5 42.0	21.8	32.6	01	VS/SSLP	SD	4,62 9,25	6.92 13.8	6.74 13.5	10.1 20.2	9.44 18.9	14.1 28.2	12.3 24.7	18.4
	2	58 65	43.5 48.8	65.3 73.1	52.2 58.5	78.3 87.8	51.1 57.3	76.7 85.9	47.9 53.6	71.8 80.4		LSL	S	3.80 7.60	5.70 11.4	5.54 11.1	8.31 16.6	7.78	11.6 23.3	10.1 20.3	15.2
LSLP	11/4	58	16.3	24.5	10.9	16.3	5.44	8.16	-	-		Hole Type	Loading	Nominal Bolt Diameter, d, in.							
		60	18.3	63.6	37.0	18.3	21.6	47.3	26.1 29.3 20.8 23.4 42.6 47.7	39.2 43.9 31.3 35.0 63.9 71.6				11/8		11/4		13/8		1	1/2
	2	65	47.5	71.3	41.4	62.2	35.3	53.0						Minimum Group B Bolt Pretension, kips							
LSLT	11/4	58	26.3	39.4	39.4 24.5 44.2 27.4 54.4 43.5	36.7 41.1 65.3	22.7 25.4 44.4	34.0 38.1 66.6			He				0	1	02	1	121		148
	2	58	36.3	54.4										<i>t₀/Ω</i>	¢r _a	ε₀/Ω	050	$r_{\rm f}/\Omega$	05	t_0/Ω	05
		65	40.6	60.9	48.8	73.1	49.8	74.6						ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRF
LSLP	$L_{e} \ge L_{e tull}$	58 65	43.5 48.8	65.3 73.1	52.2 58.5	78.3 87.8	60.9 68.3	91.4 102	69.6 78.0	104 117	ST	TD/SSLT	S D	18.1 35.2	27.1 54.2	23.1 46.1	34.6 69.2	27.3 54.7	41.0 82.0	33.4 66.9	50.2 100
LSLT	$L_{\theta} \ge L_{\theta} t_{\theta} t_{\theta}$	58 65	36.3 40.6	54.4 60.9	43.5 48.8	65.3 73.1	50.8 56.9	76.1 85.3	58.0 65.0	87.0 97.5	04	VS/SSLP	S D	15.4 30.8	23.1 46.1	19.6 39.3	29.4 58.8	23.3 46.6	34.9 69.7	28.5 57.0	42.6
Edge distance for full bearing strength $L_e \ge L_e t_{M} a_e^*$ in.		STD, SSLT,	1%		115/16		21/4		2%/16			LSL	S D	12.7 25.3	19.0 38.0	16.2 32.3	24.2 48.4	19.2 38.3	28.7 57.4	23.4 46.9	35.1
		OVS	111/16		2		25/16		25/8		STO	STD = standard hole S = single shear					2				
		SSLP	111/16		2		25/16		211/16		OVS	OVS = oversized hole D = double shear									
-		LSLP	P 21/16		27/16		27	27/8		31/4		LI = short-slotted noie transverse to the line of force									
TD = stan	tard hole	oriented	transuers	e to the En	e al force						C LSL	= long-slo	fied hole tran	sverse or pa	rallel to th	e line of fo	803				
SSLP = short-slotted hole oriented parallel to the line of force									€ Hole	e Type	ASD	LRFD	Note: Sk	p-critical bol	t values ass	unie no mon	than one f	liler has bee	n provid		
OVS = over	sized hole	oriented r	d parallel to the line of force						STD	and SSLT	Q = 1.50	e = 1.00	or bolts i	have been a	dded to distr Rectines	ibute loads i	n the fillers.	a subset file	21		
.sur = long-sicted noie oriented parallel to the line or forCe										over AGC Specification Sections 33.8						the second state	18				

Effective Net Area

- likely path to "rip" across
- bolts divide transferred force too
- shear lag $A_e \leq A_n U$

Elements of Architectural Structures ARCH 614

S2007abn

Tension Members

- steel members can have holes
- reduced area

$$A_n = A_g - A_{of all holes} + t\Sigma \frac{s}{4g}$$

• increased stress

(AISC - Steel Structures of the Everyday)

_c2

Tension Members

limit states for failure

Lecture 19

 $P_a \leq \frac{P_n}{\Omega} \quad P_u \leq \phi_t P_n$

TEAR-ING OF THE PLATE ADROSS THE BOLT HOLES

S2007abn

- 1. yielding $\phi_t = 0.9$ $P_n = F_v A_g$
- 2. rupture* $\phi_t = 0.75$ $P_n = F_u A_e$ A_{α} - gross area
 - A_e effective net area
 - (holes 3/16" + d)
- F_{ii} = the tensile strength of the steel (ultimate) Steel Bolts 13

Elements of Architectural Structures ARCH 614

Framed Beam Connections

- terms
 - coping

Beam Connections

- LRFD provisions
 - shear yielding
 - shear rupture
 - block shear rupture
 - tension yielding
 - tension rupture
 - local web buckling
 - lateral torsional buckling

Lecture 19

ARCH 614

Steel Bolts 17 Lecture 19

Elements of Architectural Structures ARCH 614

$\frac{\textit{Beam Connections}}{R_n = 0.6F_uA_{nv} + U_{bs}F_uA_{nt} \le 0.6F_yA_{gv} + U_{bs}F_uA_{nt}}$

- where U_{bs} is 1 for uniform tensile stress

Figure 2-1. Block Shear Rupture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)

block shear rupture

Steel Bolts 17 Lecture 19 Elements of Architectural Structures ARCH 614

Figure 2-14. Tension Fracture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)

tension rupture

S2012abn

Other Bolted Connections

- truss gussets
- base plates
- splices

Steel Bolts 19

Lecture 19

(AISC - Steel Structures of the Everyday)

Elements of Architectural Structures ARCH 614