ELEMENTS OF ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

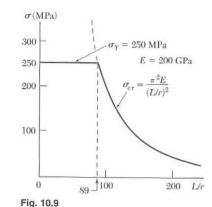
ARCH 614

DR. ANNE NICHOLS

SPRING 2014

eignteen

steel construction: column design


Steel Columns Lecture 18 nents of Architectural Structures ARCH 614

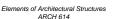
Cor-Ten Steel Sculpture By Richard Serra Museum of Modern Art Fort Worth, TX (AISC - Steel Structures of the Everyday)

Design Methods (revisited)

- know
 - loads or lengths
- select
 - section or load
 - adequate for strength and no buckling

Structural Steel

- standard rolled shapes
 (W, C, L, T)
- tubing
- pipe


Steel Columns 2

Lecture 18

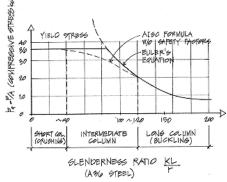
• built-up

S2007abn

Allowable Stress Design (ASD)

AICS 9th ed

$$F_a = \frac{f_{critical}}{F.S.} = \frac{12\pi^2 E}{23(Kl/r)^2}$$


• slenderness ratio $\frac{Kl}{r}$

- for
$$kl/r \ge C_c$$
 = 126.1 with $F_y = 36$ ksi
= 107.0 with $F_y = 50$ ksi

Steel Columns 4 Lecture 18 Elements of Architectural Structures ARCH 614 S2007abn

C_c and Euler's Formula

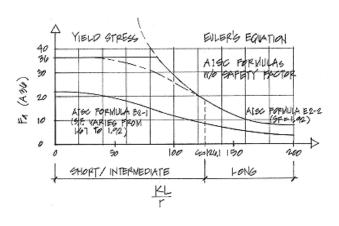
- $KI/r < C_c$
 - short and stubby
 - parabolic transition
- $KI/r > C_c$
 - Euler's relationship
 - < 200 preferred

Steel Columns 5 Lecture 18

Flements of Architectural Structures ARCH 614

S2007abr

Short / Intermediate


•
$$L_e/r < C_c$$

$$F_a = \left[1 - \frac{\left(\frac{Kl}{r}\right)^2}{2C_c^2}\right] \frac{F_y}{F.S.}$$

- where

$$F.S. = \frac{5}{3} + \frac{3(Kl/r)}{8C_c} - \frac{(Kl/r)^3}{8C_c^3}$$

C_c and Euler's Formula

Steel Columns 6 Lecture 18

Elements of Architectural Structures

S2007abn

Unified Design

limit states for failure

$$P_a \leq \frac{1}{2} n / \Omega$$

$$P_u \leq \phi_c P_n$$

$$\phi_c = 0.90 \quad P_n = F_{cr} A_g$$

1. yielding
$$\frac{KL}{r} \le 4.71 \sqrt{\frac{E}{F_y}}$$
 or $F_e \ge 0.44F_y$

2. buckling
$$\frac{KL}{r} > 4.71 \sqrt{\frac{E}{F_{y}}}$$
 or $F_{e} < 0.44F_{y}$

F_e – elastic buckling stress (Euler)

Steel Columns 7

Elements of Architectural Structures

S2007abn

Steel Columns 8 Lecture 18

Flements of Architectural Structures ARCH 614

F2011abr

Unified Design

•
$$P_n = F_{cr}A_g$$

- for $\frac{KL}{r} \le 4.71\sqrt{\frac{E}{F_y}}$ $F_{cr} = \left| 0.658^{\frac{F_y}{F_e}} \right| F_y$

- for
$$\frac{KL}{r} > 4.71 \sqrt{\frac{E}{F_y}}$$
 $F_{cr} = 0.877 F_e$ - where
$$F_e = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2}$$

Steel Columns 9 Lecture 18

Flements of Architectural Structures ARCH 614

F2011ahn

Procedure for Design

- 1. guess a size (pick a section)
- 2. calculate KL/r
 - biggest of KL/r with respect to x axes and y axis
- 3. find F_a or F_{cr} (see Note) from appropriate equations

or find a chart

Note: text uses F. and old ϕ = 0.85

4. compute $P_n = F_{cr}A_{\alpha}$

Procedure for Analysis

- 1. calculate KL/r
 - biggest of KL/r with respect to x axes and y axis
- 2. find F_{cr} (see Note) from appropriate equation
 - tables are available

Note: text uses F

3. compute $P_n = F_{cr}A_q$ and old $\phi = 0.85$

- 4. is $P_a \leq P_n/\Omega$? or is $P_u \leq \phi P_n$?
 - ves: ok
 - no: insufficient capacity and no good

Steel Columns 8

Elements of Architectural Structures ARCH 614

S2007abn

Procedure for Design (cont'd)

- 5. is $P_a \leq P_n/\Omega$? or is $P_u \leq \phi P_n$?

 - no: pick a bigger section and go back to step 2.
- 6. check design efficiency
 - percentage of stress = $\frac{P_r}{P} \cdot 100\%$
 - if between 90-100%: good
 - if < 90%: pick a smaller section and go back to step 2.

Steel Columns 10 Lecture 18

Elements of Architectural Structures

S2007abn

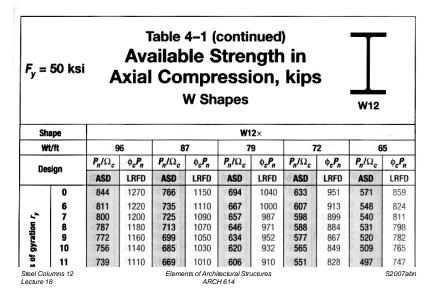
Column Charts, ϕF_{cr}

Available Critical Stress, $\phi_c F_{cr}$, for Compression Members, ksi (F_v :	= 50 ksi and	$\phi_c = 0.90$
---	--------------	-----------------

KL/r	$\phi_c F_{cr}$								
1	45.0	41	39.8	81	27.9	121	15.4	161	8.72
2	45.0	42	39.6	82	27.5	122	15.2	162	8.61
3	45.0	43	39.3	83	27.2	123	14.9	163	8.50
4	44.9	44	39.1	84	26.9	124	14.7	164	8.40
5	44.9	45	38.8	85	26.5	125	14.5	165	8.30
6	44.9	46	38.5	86	26.2	126	14.2	166	8.20
7	44.8	47	38.3	87	25.9	127	14.0	167	8.10
8	44.8	48	38.0	88	25.5	128	13.8	168	8.00
9	44.7	49	37.8	89	25.2	129	13.6	169	7.91
10	44.7	50	37.5	90	24.9	130	13.4	170	7.82
11	44.6	51	37.2	91	24.6	131	13.2	171	7.73
12	44.5	52	36.9	92	24.2	132	13.0	172	7.64
13	44.4	53	36.6	93	23.9	133	12.8	173	7.55
14	44.4	54	36.4	94	23.6	134	12.6	174	7.46
15	44.3	55	36.1	95	23.3	135	12.4	175	7.38
16	44.2	56	35.8	96	22.9	136	12.2	176	7.29
17	44.1	57	35.5	97	22.6	137	12.0	177	7.21
18	43.9	58	35.2	98	22.3	138	11.9	178	7.13
19	43.8	59	34.9	99	22.0	139	11.7	179	7.05
20	43.7	60	34.6	100	21.7	140	11.5	180	6.97
21	43.6	61	34.3	101	21.3	141	11.4	181	6.90
22	43.4	62	34.0	102	21.0	142	11.2	182	6.82
23	43.3	63	33.7	103	20.7	143	11.0	183	6.75
24	43.1	64	33.4	104	20.4	144	10.9	184	6.67
25	43 N	65	33 N	105	20 1	145	10.7	185	6 60

ARCH 614

Beam-Column Design


Lecture 18

• moment magnification (P-∆)

$$M_u = B_1 M_{max-factored}$$
 $B_1 = \frac{C_m}{1 - (P_u/P_{e1})}$

$$C_m$$
 – modification factor for end conditions
= 0.6 – 0.4(M_1/M_2) or
0.85 restrained, 1.00 unrestrained
 P_{e1} – Euler buckling strength $P_{e1} = \frac{\pi^2 EA}{\left(Kl/r\right)^2}$

Column Charts

Beam-Column Design

LRFD Steel

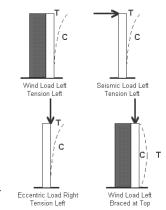
$$- for \quad \frac{P_r}{P_c} \ge 0.2: \qquad \frac{P_u}{\phi_c P_n} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}} \right) \le 1.0$$

$$- for \quad \frac{P_r}{P_c} < 0.2: \qquad \frac{P_u}{2\phi_c P_n} + \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}} \right) \le 1.0$$

 P_r is required, P_c is capacit

 ϕ_c - resistance factor for compression = 0.9

 ϕ_b - resistance factor for bending = 0.9

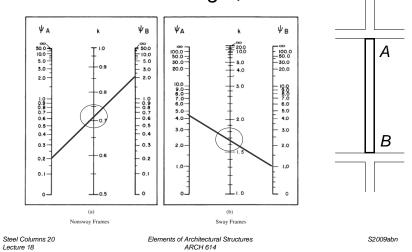

Steel Columns 17 Lecture 18

F2011ahn

Elements of Architectural Structures ARCH 614 S2007abn

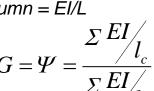
Design Steps Knowing Loads (revisited)

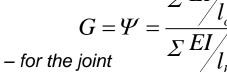
- 1. assume limiting stress
 - buckling, axial stress, combined stress
- 2. solve for r, A or S
- 3. pick trial section
- analyze stresses
- section ok?
- stop when section is ok


Steel Columns 18 Lecture 18

Elements of Architectural Structures

S2007abn


Rigid Frame Design (revisited)


• column effective length, k

Rigid Frame Design (revisited)

- columns in frames
 - ends can be "flexible"
 - stiffness affected by beams and column = EI/L

- Ic is the column length of each column
- Ib is the beam length of each beam
- · measured center to center

Steel Columns 19 Lecture 18

Elements of Architectural Structures

S2009abn