ELEMENTS OF **A**RCHITECTURAL **S**TRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 614

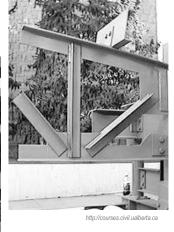
DR. ANNE NICHOLS

Spring 2014

lecture Seventeen

steel construction trusses, decks

Steel Trusses Lecture 17 Elements of Architectural Structures


S2009ab

Truss Connections

- gusset plates
- bolts
- welds

S2009abr

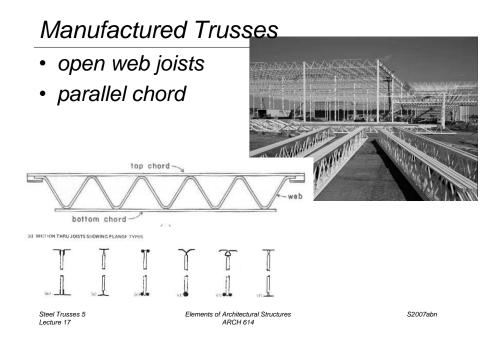
Iron & Steel Trusses

- cast iron
 - 18th century
 - chain links
- wrought-iron
- rivets

Steel Trusses 2 Lecture 17

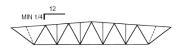
http://nisee.berkeley.edu/godden

Elements of Architectural Structures
ARCH 614


S2009abn

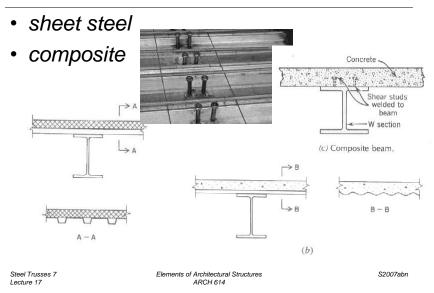
Trusses

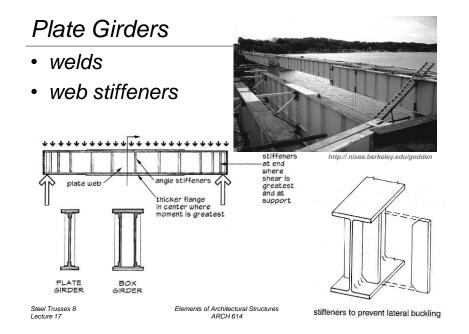
- require lateral bracing
- consider buckling
- indeterminate trusses
 - extra members
 - solvable with statics
 - · cables can't hold compression
 - displacement methods
 - elastic elongation
 - too few members, unstable



Steel Trusses 4 Lecture 17 Elements of Architectural Structures ARCH 614

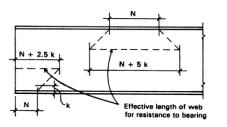
Open Web Joists


- SJI: www.steeljoist.com
- Vulcraft: www.vulcraft.com
 - K Series (Standard)
 - 8-30" deep, spans 8-50 ft
 - LH Series (Long span)
 - 18-48" deep, spans 25-96 ft
 - DLH (Deep Long Spans)
 - 52-72" deep, spans 89-144 ft
 - SLH (Long spans with high strength steel)
 - · pitched top chord
 - 80-120" deep, spans 111-240 ft



Steel Trusses 6 Lecture 17 Elements of Architectural Structures ARCH 614

Decks



Web Bearing

max loads

$$P_{\text{n(max-end)}} = (N + 2.5k)F_{y}t_{w}$$

$$P_{\text{n(max-interior)}} = (N + 5k)F_{yw}t_w$$

Steel Trusses 9 Lecture 17

Elements of Architectural Structures ARCH 614

S2007abn

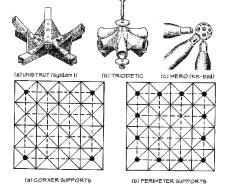
Space Trusses

- 3D with 2 force bodies and pins
 - pyramid
 - tetrahedron
- "frames" have fixed joints

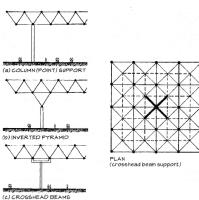
• 40's

(a) HALF OCTAHEDRON (equilateral pyramid)

(b) TETRAHEDRON


Steel Trusses 10 Lecture 17

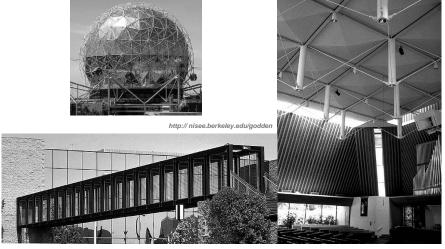
Elements of Architectural Structures ARCH 614


S2007abn

Space Trusses

connections

supports

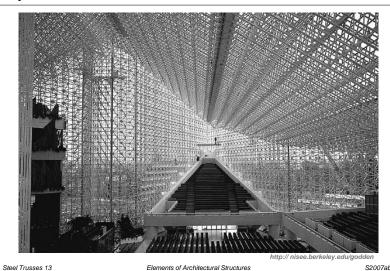


Steel Trusses 11 Lecture 17

Elements of Architectural Structures ARCH 614

S2007ahn

Space Trusses

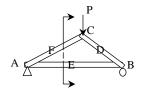


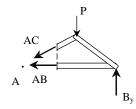
Lecture 17

Elements of Architectural Structures

S2007abn

Space Trusses


ARCH 614


Method of Sections

Lecture 17

Steel Trusses 15

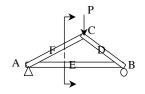
- relies on internal forces being in equilibrium on a section
- cut to expose <u>3 or less</u> members
- coplanar forces $\rightarrow \Sigma M = 0$ too

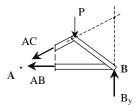
Tensegrities

- 3D frame
- discontinuous struts
- continuous cables

COLL - LE OF ARC

Steel Trusses 14 Lecture 17


Elements of Architectural St


Method of Sections

- joints on or off the section are good to sum moments
- quick for few members
- not always obvious where to cut or sum

ents of Architectural Structures

ARCH 614

Elements of Architectural Structures ARCH 614 S2007abn

Steel Trusses 16 Elem Lecture 17 S2007abn