ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN ARCH 614 DR. ANNE NICHOLS SPRING 2014

wood construction: column design

Wood Columns 1 Lecture 14 Elements of Architectural Structures ARCH 614

Effect of Length (revisited)

• long & slender

short & stubby

Compression Members (revisited)

- designed for strength & stresses
- designed for serviceability & deflection
- need to design for stability
 - ability to support a specified load without sudden or unacceptable deformations

Elements of Architectural Structures ARCH 614

S2007abr

Critical Stresses (revisited)

- when a column gets stubby, crushing will limit the load
- real world has loads with eccentricity

Wood Columns 4 Lecture 14 Elements of Architectural Structures ARCH 614

S2007abn

S2009abn

Wood Columns 2 Lecture 14

Bracing (revisited)

- bracing affects shape of buckle in one direction
- both should be checked!

Allowable Wood Stress

$$F_c' = F_c(C_D)(C_M)(C_t)(C_F)(C_p)$$

- where F_c = compressive strength
 - parallel to grain C_{D} = load duration factor C_{M} = wet service factor $(1.0 \, dry)$ C_t = temperature factor C_{F} = size factor

ARCH 614

Wood Columns 7

Lecture 14

Elements of Architectural Structures

Wood Columns

• slenderness ratio = $L/d_{min} = L/d_1$ $-d_1 = smaller dimension$ $-l_{a}/d \leq 50$ (max)

$$f_c = \frac{P}{A} \le F_c$$

- where F_c' is the allowable compressive strength parallel to the grain
- bracing common

Wood Columns 6 Lecture 14

Elements of Architectural Structures ARCH 614

S2007abr

Strength Factors

- wood properties and load duration, C_D
 - short duration
 - higher loads
 - normal duration
 - > 10 years
- stability, C_{p}

- combination curve - tables

$$F_c' = F_c^* C_p = (F_c C_D) C_p$$

Wood Columns 8

Elements of Architectural Structures ARCH 614

S2007abn

 C_p Charts

Column Stability Factor Cp

F _{CE} Fé	Sawn Cp	Glu-Lani (Cp (4)	Fra Fe	Sawn C _p	Glu-Lam Cp	Free Free	Sawn C _p	Giu-Lam C _p	F _{CF} Fc	Sawn C _p	Glu-Lam C,
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09	0.000 0.010 0.020 0.030 0.040 0.049 0.059 0.059 0.069 0.079 0.088	0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.069 0.069 0.079 0.089	0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69	0.500 0.506 0.512 0.518 0.524 0.530 0.538 0.542 0.548 0.553	0.578 0.545 0.559 0.566 0.573 0.580 0.587 0.587 0.593 0.600	1.20 1.22 1.24 1.26 1.28 1.30 1.32 1.34 1.36 1.38	0.750 0.755 0.760 0.764 0.769 0.773 0.777 0.781 0.785 0.789	0.822 0.826 0.831 0.836 0.840 0.844 0.848 0.852 0.855 0.859	2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85	0.894 0.897 0.899 0.901 0.904 0.906 0.908 0.908 0.910 0.912 0.914	0.940 0.941 0.943 0.944 0.946 0.947 0.949 0.950 0.950 0.951 0.952
0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18	0.098 0.107 0.117 0.126 0.136 0.145 0.154 0.164 0.164	0.099 0.109 0.118 0.128 0.138 0.147 0.157 0.167 0.167 0.166 0.186	0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78	0.559 0.564 0.569 0.575 0.580 0.585 0.590 0.595 0.600 0.805	0.607 0.613 0.619 0.626 0.632 0.638 0.644 0.650 0.655 0.661	1.40 1.42 1.44 1.46 1.48 1.50 1.52 1.54 1.56 1.58	0.793 0.796 0.800 0.603 0.807 0.810 0.813 0.816 0.819 0.822	0.862 0.865 0.868 0.871 0.874 0.877 0.879 0.879 0.882 0.884 0.887	2.90 2.95 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35	0.916 0.917 0.919 0.920 0.922 0.923 0.925 0.925 0.926 0.927 0.929	0.953 0.954 0.955 0.956 0.957 0.958 0.959 0.960 0.961 0.961

Procedure for Analysis (cont'd)

- 6. compute $P_{allowable} = F'_c \cdot A$
 - or find $f_{actual} = P/A$

7. is
$$P \leq P_{allowable}$$
? (or $f_{actual} \leq F'_c$?)

- yes: OK
- no: overstressed & no good

Procedure for Analysis

- 1. calculate L_e/d_{min}
 - KL/d each axis, choose largest
- 2. obtain F'_{c} - compute $F_{cE} = \frac{K_{cE}E}{\binom{L_e}{d}^2}$ · $K_{cE} = 0.3 \text{ sawn} = \frac{\binom{K_{cE}E}{\binom{L_e}{d}^2}}{\binom{L_e}{d}^2}$ · $K_{cE} = 0.418 \text{ glu-lam}$ 3. compute $F_c^* \approx F_c C_D$ 4. calculate F_{cE}/F_c^* and get C_p (chart) 5. calculate $F'_c = F'_c C_p$

Wood Columns 10 Lecture 14 Elements of Architectural Structures ARCH 614

 $_{-}E$

S2009abr

Procedure for Design

- 1. guess a size (pick a section)
- 2. calculate L_e/d_{min}
 - KL/d each axis, choose largest

3. obtain
$$F'_c = K$$

- compute
$$F_{cE} = \frac{\Pi_{cE} \Sigma}{(I_{cE})^2}$$

•
$$K_{cE} = 0.3 \text{ sawn} \left(\frac{L_e}{d} \right)$$

- *K_{cE}* = 0.418 glu-lam
- 4. compute $F_c^* \approx F_c C_D$
- 5. calculate F_{cE}/F_{c}^{*} and get C_{p} (chart)

Wood Columns 12 Lecture 14 Elements of Architectural Structures ARCH 614 S2009abn

Procedure for Design (cont'd)

6. calculate $F'_{c} = F^{*}_{c}C_{p}$ 7. compute $P_{allowable} = F'_{c}A$ • or find $f_{actual} = P/A$ 8. is $P \leq P_{allowable}$? (or $f_{actual} \leq F'_{c}$?)

- yes: OK
- no: pick a bigger section and go back to step 2.

Specific Column Charts

Column	Section	Unbraced Length (ft)										
Nominal Size	Area (in. ²)	6	8	10	12	14	16	18	20	22	24	26
4×4	12.25	11.1	7.28	4.94	3.50	2.63						
4×6	19.25	17.4	11.4	7.76	5.51	4.14						
4×8	25.375	22.9	15.1	10.2	7.26	6.46						
6×6	30.25	27.6	24.8	20.9	16.9	13.4	10.7	8.71	7.17	6.53		
6×8	41.25	37.6	33.9	28.5	23.1	18.3	14.6	11.9	9.78	8.91		
6×10	52.25	47.6	43.0	36.1	29.2	23.1	18.5	15.0	13.4	11.3		
8×8	56.25	54.0	51.5	48.1	43.5	38.0	32.3	27.4	23.1	19.7	16.9	14.6
8×10	71.25	68.4	65.3	61.0	55.1	48.1	41.0	34.7	29.3	24.9	21.4	18.4
8×12	86.25	82.8	79.0	73.8	66.7	58.2	49.6	42.0	35.4	30.2	26.0	22.3
10×10	90.25	88.4	85.9	83.0	79.0	73.6	67.0	60.0	52.9	46.4	40.4	35.5
10×12	109.25	107	104	100	95.6	89.1	81.2	72.6	64.0	56.1	48.9	42.9
10×14	128.25	126	122	118	112	105	95.3	85.3	75.1	65.9	57.5	50.4
12×12	132.25	130	128	125	122	117	111	104	95.6	86.9	78.3	70.2
14×14	182.25	180	178	176	172	168	163	156	148	139	129	119
16 imes 16	240.25	238	236	234	230	226	222	216	208	200	190	179

Elements of Architectural Structures

ARCH 614

^a Load capacity in kips for solid-sawn sections of No. 1 grade Douglas fir-larch with no adjustment for moisture or load duration conditions.

Wood Columns 13 Lecture 14 Elements of Architectural Structures ARCH 614 S2009abn

Timber Construction by Code

- light-frame
 - light loads
 - 2x's
 - floor joists 2x6, 2x8, 2x10, 2x12 typical at spacings of 12", 16", 24"
 - normal spans of 20-25 ft or 6-7.5 m
 - plywood spans between joists
 - <u>stud</u> or load-bearing masonry walls
 - limited to around 3 stories fire safety

Design of Columns with Bending

satisfy

Wood Columns 14

Lecture 14

- strength
- stability
- pick
 section

(a) Framed beam (shear) connection.

 $e = Eccentricity; M = P \times e$

Elements of Architectural Structures ARCH 614

(h) Moment connection (rigid frame) M = Moment due to beam bending

(a) upper enorm of a truss—compression plus behal $M = \frac{\omega \ell^2}{8}$

S2007abr

Wood Columns 15 Lecture 14

S2007abn

Wood Columns 16 Lecture 14

Design

• Wood

() term – magnification factor for P- Δ F'_{bx} – allowable bending strength

Design Steps Knowing Loads

- 1. assume limiting stress
 - buckling, axial stress, combined stress
- 2. solve for r, A or S
- 3. pick trial section
- 4. analyze stresses
- 5. section ok?
- 6. stop when section is ok

Wood Columns 17 Lecture 14 Elements of Architectural Structures ARCH 614 S2007abn

Wood Columns 18 Lecture 14 Elements of Architectural Structures ARCH 614 S2007abn