ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN ARCH 614 DR. ANNE NICHOLS Spring 2014 lecture thirteen # wood construction: materials & beams Lecture 13 Elements of Architectural Structures ARCH 614 Elements of Architectural Structures S2009abr #### Timber - lightweight : strength ~ like steel - strengths vary - by wood type - by direction - by "flaws" - size varies by tree growth - · renewable resource - manufactured wood - assembles pieces - adhesives Air Dry — Green To the state of o S2007abn # Wood Beam Design - · National Design Specification - National Forest Products Association - ASD & LRFD - adjustment factors x tabulated stress = allowable stress - adjustment factors terms, C with subscript - i.e, bending: $f_b \le F_b' = F_b \times (product \ of \ adjustment \ factors)$ Wood Beams 2 Lecture 13 Elements of Architectural Structures ARCH 614 S2007abr ## Wood Properties · cell structure and density http://www.swst.org/teach/set2/struct1.htm softwood Wood Beams 4 Lecture 13 Elements of Architectural Structures S2007abr Wood Beams 3 L # Wood Properties - moisture - exchanges with air easily excessive drying causes warping and shrinkage - strength varies some - temperature - steam - volatile products - combustion eams 5 Elements of Architectural Structures S2007abn Wood Beams 5 Lecture 13 #### Structural Lumber - dimension 2 x's (nominal) - beams, posts, timber, planks - grading - select structural - no. 1, 2, & 3 - tabular values by species - glu-lam - plywood | | | | | Design v | alues in pound | s per square inch | | |---|--|---|--|---|--|---|---| | | Extreme fiber in bending "Fb" Tension parallel | Horizontal | Compression perpendicular | | | | | | Species and commercial grade | Size
classification | Single-
member
uses | Repetitive-
member
uses | to grain
"F _t " | rain snear to grain | to grain | | | SOUTHERN PINE (Surfaced d
Select Structural
Dense Select Structural
No. 1
No. 1 Dense
No. 2
No. 2 Dense
No. 3
No. 3 Dense
Stud | 2" to 4" thick
2" to 4" wide | 2000
2350
1700
2000
1400
1650
775
925
775 | 2300
2700
1950
2300
1650
1900
900
1050
900 | 1150
1350
1000
1150
825
975
450
525
450 | 100
100
100
100
90
90
90
90
90 | 565
660
565
660
565
660
565
660
565 | | | Construction
Standard
Utility | 2" to 4"
thick
4" wide | 1000
575
275 | 1150
675
300 | 600
350
150 | 100
90
90 | 565
565
565 | | | Select Structural | THE REAL PROPERTY. | 1750 | 2000 | 1150 | 90 | 565 | ı | Elements of Architectural Structures ARCH 614 S2007abn ## Wood Properties - load duration - short duration - higher loads - normal duration - > 10 years additional deformation with no additional load Architecture Wee k.com Wood Beams 6 Lecture 13 Elements of Architectural Structures ARCH 614 S2007abn # Adjustment Factors - terms - $-C_D$ = load duration factor - $-C_{M}$ = wet service factor - 1.0 dry ≤ 16% MC - $-C_F = size factor$ - visually graded sawn lumber and round timber > 12" depth $C_F = (12/d)^{\frac{1}{9}} \le 1.0$ Table 5.2 (pg 177) Wood Beams 8 Lecture 13 Elements of Architectural Structures ARCH 614 ## Adjustment Factors - terms - $-C_{fu} = flat use factor$ - · not decking - $-C_i = incising factor$ - · increase depth for pressure treatment - $-C_t$ = temperature factor - · lose strength at high temperatures Wood Beams 9 Lecture 13 Elements of Architectural Structures ARCH 614 S2007abn #### Allowable Stresses - design values - F_b: bending stress - − F_t: tensile stress | strong - F_v : horizontal shear stress - $F_{c\perp}$: compression stress - $F_{c\perp}$: compression stress (perpendicular to grain) - F_c: compression stress (parallel to grain) strong - E: modulus of elasticity - $-F_p$: bearing stress (parallel to grain) weak ## Adjustment Factors - terms - $-C_r$ = repetitive member factor - $-C_H$ = shear stress factor - splitting - $-C_V = volume\ factor$ - same as C_F for glue laminated timber - $-C_L$ = beam stability factor - · beams without full lateral support - $-C_C$ = curvature factor for laminated arches Wood Beams 10 Lecture 13 Elements of Architectural Structures ARCH 614 S2007abr #### **Load Combinations** - design loads, take the bigger of - (dead loads)/0.9 - (dead loads + any possible combination of live loads)/C_D - deflection limits - no load factors - for stiffer members: - Δ_T max from LL + 0.5(DL) Wood Beams 12 Lecture 13 Elements of Architectural Structures ARCH 614 ## Beam Design Criteria - strength design - bending stresses predominate - shear stresses occur - serviceability - limit deflection and cracking - control noise & vibration - no excessive settlement of foundations - durability - appearance - component damage - ponding Wood Beams 13 Lecture 13 Elements of Architectural Structures S2009abn S2007ahn #### **Deflection Limits** #### · based on service condition, severity | Use | LL only | DL+LL | |-----------------------|-----------------|-------| | Roof beams: | | | | Industrial | L/180 | L/120 | | Commercial | | | | plaster ceiling | L/240 | L/180 | | no plaster | L/360 | L/240 | | Floor beams: | | | | Ordinary Usage | L/360 | L/240 | | Roof or floor (damage | eable elements) | L/480 | ## Beam Design Criteria - superpositioning - use of beam charts - elastic range only! - "add" moment diagrams - "add" deflection CURVES (not maximums) S2009abn # Lateral Buckling - lateral buckling caused by compressive forces at top coupled with insufficient rigidity - can occur at low stress levels - stiffen, brace or bigger I_v Elements of Architectural Structures ARCH 614 S2007abn Lecture 13 # Design Procedure - 1. Know F_{all} for the material or F_{U} for LRFD - 2. Draw V & M, finding M_{max} 3. Calculate $S_{reg'd}$ $(f_b \le F_b)$ b 4. Determine section size $$S = \frac{bh^2}{6}$$ Wood Beams 16 Lecture 13 Elements of Architectural Structures ARCH 614 S2007abn # Beam Design - 6. Evaluate shear stresses horizontal - $(f_v \leq F_v)$ - W and rectangles $f_{v-\text{max}} = \frac{3V}{2A} \approx \frac{V}{A_{web}}$ - general $$f_{v-\text{max}} = \frac{VQ}{Ib}$$ ## Beam Design - 4^* . Include self weight for M_{max} - and repeat 3 & 4 if necessary 5. Consider lateral stability Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho. Photo: Ken Carper Wood Beams 17 Lecture 13 Elements of Architectural Structures ARCH 614 S2007abn # Beam Design 7. Provide adequate bearing area at supports $$f_p = \frac{P}{A} \le F_p$$ Wood Beams 18 Lecture 13 Elements of Architectural Structures ARCH 614 S2007abn Wood Beams 19 Lecture 13 Elements of Architectural Structures ARCH 614 # Beam Design #### 8. Evaluate torsion $$(f_v \le F_v)$$ circular cross section $$f_{v} = \frac{T\rho}{J}$$ rectangular $$f_{v} = \frac{T}{c_{1}ab^{2}}$$ Wood Beams 20 Lecture 13 Wood Beams 22 Lecture 13 Elements of Architectural Structures ARCH 614 | | | | M | |------------|-------------------|------------|----| | \Diamond |
SPAND
BEAM | PEL
PEL | | | |
 | 7 | | | |
FLOOP | 13 | 14 | | | | | | | a/b | C ₁ | C ₂ | |----------|-----------------------|----------------| | 1.0 | * 0.208 | 0.1406 | | 1.2 | 0.219 | 0.1661 | | 1.5 | 0.231 | 0.1958 | | 2.0 | 0.246 | 0.229 | | 2.5 | 0.258 | 0.249 | | 3.0 | 0.267 | 0.263 | | 4.0 | 0.282 | 0.281 | | 5.0 | 0.291 | 0.291 | | 10.0 | 0.312 | 0.312 | | ∞ | 0.333 | 0.333 | ### Joists & Rafters - · allowable load tables - allowable length tables for common live & dead loads - · lateral bracing needed - common spacings Elements of Architectural Structures ARCH 614 #### S2007abn ## Beam Design #### 9. Evaluate deflections ARCH 614 # Engineered Wood plywood Lecture 13 - veneers at different orientations - glued together - split resistant - higher and uniform strength - limited shrinkage and swelling - used for sheathing, decking, shear walls, diaphragms Wood Beams 23 Lecture 13 Elements of Architectural Structures ARCH 614 # Engineered Wood - glued-laminated timber - glulam - short pieces glued together - straight or curved - grain direction parallel - higher strength - more expensive than sawn timber - large members (up to 100 feet!) - flexible forms Wood Beams 24 Lecture 13 Elements of Architectural Structures ARCH 614 S2007abn #### Timber Elements - · stressed-skin elements - modular built-up "plates" - typically used for floors or roofs Wood Beams 26 Lecture 13 Elements of Architectural Structures ARCH 614 S2007abn # Engineered Wood - I sections - beams - other products - pressed veneer strip panels (Parallam) - wood fibers - Hardieboard: cement & wood Wood Beams 25 Lecture 13 Elements of Architectural Structures ARCH 614 S2007abn #### Timber Elements - built-up box sections - built-up beams - usually site-fabricated - bigger spans Elements of Architectural Structures ARCH 614 #### Timber Elements - trusses - long spans - versatile - common in roofs Elements of Architectural Structur S2007abn #### Timber Elements - folded plates and arch panels - usually of plywood Wood Beams 30 Lecture 13 Elements of Architectural Structures ARCH 614 S2009abn ## Timber Elements - · arches and lamellas - arches commonly laminated timber - long spans - usually only for roofs Elements of Architectural Structures ARCH 614 # Approximate Depths