ELEMENTS OF ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN ARCH 614

DR. ANNE NICHOLS
Spring 2014

lecture thirteen

wood construction: materials & beams

Lecture 13

Elements of Architectural Structures ARCH 614

Elements of Architectural Structures

S2009abr

Timber

- lightweight : strength ~ like steel
- strengths vary
 - by wood type
 - by direction
 - by "flaws"
- size varies by tree growth
- · renewable resource
- manufactured wood
 - assembles pieces
 - adhesives

Air Dry
— Green

To the state of the state o

S2007abn

Wood Beam Design

- · National Design Specification
 - National Forest Products Association

- ASD & LRFD
- adjustment factors x tabulated stress = allowable stress
- adjustment factors terms, C with subscript
- i.e, bending:

 $f_b \le F_b' = F_b \times (product \ of \ adjustment \ factors)$

Wood Beams 2 Lecture 13 Elements of Architectural Structures ARCH 614 S2007abr

Wood Properties

· cell structure and density

http://www.swst.org/teach/set2/struct1.htm

softwood

Wood Beams 4 Lecture 13 Elements of Architectural Structures

S2007abr

Wood Beams 3

L

Wood Properties

- moisture
 - exchanges with air easily

 excessive drying causes warping and shrinkage

- strength varies some
- temperature
 - steam
 - volatile products
 - combustion

eams 5 Elements of Architectural Structures

S2007abn

Wood Beams 5 Lecture 13

Structural Lumber

- dimension 2 x's (nominal)
- beams, posts, timber, planks
- grading
 - select structural
 - no. 1, 2, & 3
- tabular values by species
- glu-lam
- plywood

				Design v	alues in pound	s per square inch	
	Extreme fiber in bending "Fb" Tension parallel	Horizontal	Compression perpendicular				
Species and commercial grade	Size classification	Single- member uses	Repetitive- member uses	to grain "F _t "	rain snear to grain	to grain	
SOUTHERN PINE (Surfaced d Select Structural Dense Select Structural No. 1 No. 1 Dense No. 2 No. 2 Dense No. 3 No. 3 Dense Stud	2" to 4" thick 2" to 4" wide	2000 2350 1700 2000 1400 1650 775 925 775	2300 2700 1950 2300 1650 1900 900 1050 900	1150 1350 1000 1150 825 975 450 525 450	100 100 100 100 90 90 90 90 90	565 660 565 660 565 660 565 660 565	
Construction Standard Utility	2" to 4" thick 4" wide	1000 575 275	1150 675 300	600 350 150	100 90 90	565 565 565	
Select Structural	THE REAL PROPERTY.	1750	2000	1150	90	565	ı

Elements of Architectural Structures ARCH 614 S2007abn

Wood Properties

- load duration
 - short duration
 - higher loads
 - normal duration
 - > 10 years

additional
 deformation with no additional load

Architecture Wee k.com

Wood Beams 6 Lecture 13 Elements of Architectural Structures ARCH 614 S2007abn

Adjustment Factors

- terms
 - $-C_D$ = load duration factor
 - $-C_{M}$ = wet service factor
 - 1.0 dry ≤ 16% MC
 - $-C_F = size factor$
 - visually graded sawn lumber and round timber > 12" depth

 $C_F = (12/d)^{\frac{1}{9}} \le 1.0$

Table 5.2 (pg 177)

Wood Beams 8 Lecture 13 Elements of Architectural Structures ARCH 614

Adjustment Factors

- terms
 - $-C_{fu} = flat use factor$
 - · not decking
 - $-C_i = incising factor$
 - · increase depth for pressure treatment
 - $-C_t$ = temperature factor
 - · lose strength at high temperatures

Wood Beams 9 Lecture 13 Elements of Architectural Structures ARCH 614 S2007abn

Allowable Stresses

- design values
 - F_b: bending stress
 - − F_t: tensile stress | strong
 - F_v : horizontal shear stress - $F_{c\perp}$: compression stress
 - $F_{c\perp}$: compression stress (perpendicular to grain)
 - F_c: compression stress (parallel to grain) strong
 - E: modulus of elasticity
 - $-F_p$: bearing stress (parallel to grain)

weak

Adjustment Factors

- terms
 - $-C_r$ = repetitive member factor
 - $-C_H$ = shear stress factor
 - splitting
 - $-C_V = volume\ factor$
 - same as C_F for glue laminated timber
 - $-C_L$ = beam stability factor
 - · beams without full lateral support
 - $-C_C$ = curvature factor for laminated arches

Wood Beams 10 Lecture 13 Elements of Architectural Structures ARCH 614 S2007abr

Load Combinations

- design loads, take the bigger of
 - (dead loads)/0.9
 - (dead loads + any possible combination of live loads)/C_D
- deflection limits
 - no load factors
 - for stiffer members:
 - Δ_T max from LL + 0.5(DL)

Wood Beams 12 Lecture 13 Elements of Architectural Structures ARCH 614

Beam Design Criteria

- strength design
 - bending stresses predominate
 - shear stresses occur
- serviceability
 - limit deflection and cracking
 - control noise & vibration
 - no excessive settlement of foundations
 - durability
 - appearance
 - component damage
 - ponding

Wood Beams 13 Lecture 13 Elements of Architectural Structures

S2009abn

S2007ahn

Deflection Limits

· based on service condition, severity

Use	LL only	DL+LL
Roof beams:		
Industrial	L/180	L/120
Commercial		
plaster ceiling	L/240	L/180
no plaster	L/360	L/240
Floor beams:		
Ordinary Usage	L/360	L/240
Roof or floor (damage	eable elements)	L/480

Beam Design Criteria

- superpositioning
 - use of beam charts
 - elastic range only!
 - "add" moment diagrams
 - "add" deflection CURVES (not maximums)

S2009abn

Lateral Buckling

- lateral buckling caused by compressive forces at top coupled with insufficient rigidity
- can occur at low stress levels
- stiffen, brace or bigger I_v

Elements of Architectural Structures ARCH 614

S2007abn

Lecture 13

Design Procedure

- 1. Know F_{all} for the material or F_{U} for LRFD
- 2. Draw V & M, finding M_{max}

3. Calculate $S_{reg'd}$ $(f_b \le F_b)$

b

4. Determine section size

$$S = \frac{bh^2}{6}$$

Wood Beams 16 Lecture 13 Elements of Architectural Structures ARCH 614 S2007abn

Beam Design

- 6. Evaluate shear stresses horizontal
 - $(f_v \leq F_v)$
 - W and rectangles $f_{v-\text{max}} = \frac{3V}{2A} \approx \frac{V}{A_{web}}$
 - general

$$f_{v-\text{max}} = \frac{VQ}{Ib}$$

Beam Design

- 4^* . Include self weight for M_{max}
 - and repeat 3 & 4 if necessary

5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper

Wood Beams 17 Lecture 13 Elements of Architectural Structures ARCH 614 S2007abn

Beam Design

7. Provide adequate bearing area at supports

$$f_p = \frac{P}{A} \le F_p$$

Wood Beams 18 Lecture 13 Elements of Architectural Structures ARCH 614 S2007abn

Wood Beams 19 Lecture 13 Elements of Architectural Structures ARCH 614

Beam Design

8. Evaluate torsion

$$(f_v \le F_v)$$

circular cross section

$$f_{v} = \frac{T\rho}{J}$$

rectangular

$$f_{v} = \frac{T}{c_{1}ab^{2}}$$

Wood Beams 20 Lecture 13

Wood Beams 22

Lecture 13

Elements of Architectural Structures ARCH 614

			M
\Diamond	 SPAND BEAM	PEL PEL	
	 	7	
	 FLOOP	13	14

a/b	C ₁	C ₂
1.0	* 0.208	0.1406
1.2	0.219	0.1661
1.5	0.231	0.1958
2.0	0.246	0.229
2.5	0.258	0.249
3.0	0.267	0.263
4.0	0.282	0.281
5.0	0.291	0.291
10.0	0.312	0.312
∞	0.333	0.333

Joists & Rafters

- · allowable load tables
- allowable length tables for common live & dead loads
- · lateral bracing needed
- common spacings

Elements of Architectural Structures

ARCH 614

S2007abn

Beam Design

9. Evaluate deflections

ARCH 614

Engineered Wood

plywood

Lecture 13

- veneers at different orientations
- glued together
- split resistant
- higher and uniform strength
- limited shrinkage and swelling
- used for sheathing, decking, shear walls, diaphragms

Wood Beams 23 Lecture 13 Elements of Architectural Structures ARCH 614

Engineered Wood

- glued-laminated timber
 - glulam
 - short pieces glued together
 - straight or curved
 - grain direction parallel
 - higher strength
 - more expensive than sawn timber
 - large members (up to 100 feet!)
 - flexible forms

Wood Beams 24 Lecture 13 Elements of Architectural Structures ARCH 614 S2007abn

Timber Elements

- · stressed-skin elements
 - modular built-up "plates"
 - typically used for floors or roofs

Wood Beams 26 Lecture 13 Elements of Architectural Structures ARCH 614 S2007abn

Engineered Wood

- I sections
 - beams
- other products
 - pressed veneer strip panels (Parallam)

- wood fibers
 - Hardieboard: cement & wood

Wood Beams 25 Lecture 13 Elements of Architectural Structures ARCH 614 S2007abn

Timber Elements

- built-up box sections
 - built-up beams
 - usually site-fabricated
 - bigger spans

Elements of Architectural Structures ARCH 614

Timber Elements

- trusses
 - long spans
 - versatile
 - common in roofs

Elements of Architectural Structur

S2007abn

Timber Elements

- folded plates and arch panels
 - usually of plywood

Wood Beams 30 Lecture 13 Elements of Architectural Structures ARCH 614 S2009abn

Timber Elements

- · arches and lamellas
 - arches commonly laminated timber
 - long spans
 - usually only for roofs

Elements of Architectural Structures ARCH 614

Approximate Depths

