ELEMENTS OF ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 614 DR. ANNE NICHOLS **S**PRING 2014

pinned frames

Pinned Frames Lecture 10

Elements of Architectural Structures ARCH 614

S2009abr

Continuous Beams

- statically indeterminate
- reduced moments than simple beam

Continuous Beams

- loading pattern affects
 - moments & deflection

Continuous Beams

unload end span

S2007abr Pinned Frames 4 Elements of Architectural Structures Lecture 10 ARCH 614

S2007abn

Continuous Beams

• unload middle span

Pinned Frames	5
Lecture 10	

Elements of Architectural Structures ARCH 614

Moment Distribution (a)

no load

http:// nisee.berkeley.edu/godden

Pinned Frames 7 Lecture 10

Elements of Architectural Structures ARCH 614 S2007abn

S2007abn

Moment Redistribution

- continuous slabs & beams with uniform loading
 - joints similar to fixed ends, but can rotate
- change in moment to center = $\frac{wL^2}{8}$ - M_{max} for simply supported beam $\frac{wL^2}{8}$

Moment Distribution (b)

• add load

http:// nisee.berkeley.edu/godden

Pinned Frames 8 Lecture 10 Elements of Architectural Structures ARCH 614 S2007abn

Moment Distribution Method (c)

• release joint 2

ARCH 614

Moment Distribution Method (e)

• exposure of final shape after cycles over initial shape

http:// nisee.berkeley.edu/godden

Moment Distribution Method (d)

• release joint 3

Pinned Frames 10 Lecture 10 Elements of Architectural Structures ARCH 614 S2007abn

Analysis Methods

- Approximate Methods
 - location of inflection points
- Force Method
 - forces are unknowns
- Displacement Method
 - displacements are unknowns

Pinned Frames 11 Lecture 10

Lecture 10

Elements of Architectural Structures ARCH 614 S2007abn

Elements of Architectural Structures ARCH 614 S2007abn

3

Theorem of Three Moments

- moments at three adjacent supports (2 spans)
- distributed load and same I:

$$M_{1}L_{1} + 2M_{2}(L_{1} + L_{2}) + M_{3}L_{2} = -\frac{w_{1}L_{1}^{3}}{4} - \frac{w_{2}L_{2}^{3}}{4}$$

• concentrated loads and same I:

$$M_{1}L_{1} + 2M_{2}(L_{1} + L_{2}) + M_{3}L_{2} = -\sum P_{1}L_{1}^{2}(n_{1} - n_{1}^{3}) - \sum P_{2}L_{2}^{2}(n_{2} - n_{2}^{3})$$

Pinned Frames 13 Lecture 10 Elements of Architectural Structures ARCH 614

Pinned Frames

- structures with at least one <u>3 force body</u>
- · connected with pins
- reactions are equal and opposite

– non-rigid

– rigid

Pinned Frames 15 Lecture 10 Elements of Architectural Structures ARCH 614 S2007abn

S2007abn

Two Span Beams & Charts

- equal spans & symmetrical loading
- middle support as flat slope

Rigid Frames

- <u>rigid</u> frames have no pins
- frame is all one body
- typically statically indeterminate
- types

Pinned Frames 16

Lecture 10

- portal
- gable

Arches

- ancient
- traditional shape to span long distances

Rainbow Bridge National Monumen Pinned Frames 19 Elements of Architectural Structures Lecture 10 ARCH 614

Roman Aquaducts

S2007abn

Internal Pin Connections

- statically determinant
 - 3 equations per body
 - 2 reactions per pin + support forces

Arches

- primarily sees compression
- a brick "likes an arch"

Lecture 10

Elements of Architectural Structures ARCH 614

S2007abn

Arches

- behavior
 - thrust related to height to width

Pinned Frames 21 Lecture 10

Elements of Architectural Structures ARCH 614

S2007abn

Beams with Internal Pins

- · statically determinant when
 - 3 equilibrium equations per link =>
 - total of support & pin reactions (properly constrained)
- zero moment at pins

Pinned Frames 23 Lecture 10 Elements of Architectural Structures ARCH 614 S2007abn

Three-Hinged Arch

- statically determinant
 - 2 bodies, 6 equilibrium equations
 - -4 support, 2 pin reactions (= 6)

Pinned Frames 22 Lecture 10

Elements of Architectural Structures ARCH 614

```
S2007abn
```

Procedure

- solve for all support forces you can
- draw a FBD of each member
 - pins are integral with member
 - pins with loads should belong to 3+ force bodies
 - pin forces are equal and opposite on connecting bodies
 - identify 2 force bodies vs. 3+ force bodies
 - use all equilibrium equations

Pinned Frames 24 Lecture 10 Elements of Architectural Structures ARCH 614

6