

Course Description

- statics
 - physics of forces and reactions on bodies and systems
 - equilibrium (bodies at rest)
- structures
 - something made up of interdependent parts in a definite pattern of organization
- design
 - assessing and meeting structural requirements of parts and the whole

S2006abn

Syllabus & Student Understandings

Introduction 2 Lecture 1 Elements of Architectural Structures ARCH 614 S2005abn

Course Description

- mechanics of materials
 - external loads and effect on deformable bodies
 - use it to answer question if structure meets requirements of
 - · stability and equilibrium
 - strength and stiffness
 - other principle building requirements
 - · economy, functionality and aesthetics

Introduction 4

Elements of Architectural Structures

S2005abr

Structure Requirements

stability & equilibriumSTATICS

Figure 1.16 Equilibrium and Stability?—sculpture by Richard Byer. Photo by author.

Introduction 5

Elements of Architectural Structures ARCH 614 S2005abn

Structural System Selection

- kind & size of loads
- building function
- · soil & topology of site
- systems integration
- fire rating
- construction (\$\$, schedule)
- · architectural form

Structure Requirements (cont)

strength & stiffness

 concerned with stability of components

Figure 1.15 Stability and the strength of a structure—the collapse of a portion of the UW Husky stadium during construction (1987) due to a lack of adequate bracing to ensure stability. Photo by author.

Introduction 6 Lecture 1 Elements of Architectural Structures ARCH 614 S2005abn

Knowledge Required

- · external forces
- internal forces
- · material properties
- member cross sections

Figure 2.34 An example of torsion on a cantilever beam.

- ability of a material to resist breaking
- · structural elements that resist excessive
 - deflection
 - deformation

Introduction 7 Lecture 1 Elements of Architectural Structures ARCH 614 S2006abn

Introduction 7 Lecture 1 Elements of Architectural Structures ARCH 614 S2005abr

Problem Solving

1. STATICS:

equilibrium of external forces. internal forces, stresses

2. GEOMETRY:

cross section properties, deformations and conditions of geometric fit, strains

3. MATERIAL PROPERTIES:

stress-strain relationship for each material obtained from testing

Introduction 8

Elements of Architectural Structures ARCH 614

S2005abn

Architectural Structures

- incorporates
 - stability and equilibrium
 - strength and stiffness
 - economy, functionality and aesthetics
- uses
 - sculpture
 - furniture
 - buildings

Relation to Architecture

"The geometry and arrangement of the load-bearing members, the use of materials, and the crafting of joints all represent opportunities for buildings to express themselves. The best buildings are not designed by architects who after resolving the formal and spatial issues, simply ask the structural engineer to make sure it doesn't fall down." - Onouye & Kane

Statics and Strength of Materials for Architecture and Building Construction

Introduction 10 Lecture 1

Flements of Architectural Structures ARCH 614

The "Fist"

Introduction 11

Lecture 1

Detroit, MI

S2005abn

Elements of Architectural Structures

AISC (Steel) Sculpture College Station, TX

Elements of Architectural Structures

S2005abn

"Jamborie" Philadelphia, PA Daniel Barret

Introduction 13 Lecture 1

Elements of Architectural Structures ARCH 614

S2005abn

Introduction 14

Lecture 1

Elements of Architectural Structures ARCH 614

S2005abn

"Telamones" Chicago, IL Walter Arnold

Introduction 15 Lecture 1

Elements of Architectural Structures ARCH 614

"Free Ride Home" 1974 Kenneth Snelson

Introduction 16 Lecture 1

Elements of Architectural Structures ARCH 614

S2005abn

"Zauber" Laudenslager, Jeffery

S2005abn

Introduction 17 Lecture 1

Elements of Architectural Structures ARCH 614

Conference Table Heath Satow

Lecture 1

Elements of Architectural Structures ARCH 614

S2005abn

Bar Stool "Stainless Butterfly" Daniel Barret

Introduction 19 Lecture 1

Elements of Architectural Structures ARCH 614

Chair Paul Freundt

End Tables
Rameu-Richard

Introduction 20 Lecture 1 Elements of Architectural Structures ARCH 614 S2005abn

Introduction 21 Lecture 1 Elements of Architectural Structures ARCH 614 S2005abn

Steel House, Lubbock, TX Robert Bruno

Introduction 22 Lecture 1 Elements of Architectural Structures ARCH 614 S2005abn

Guggenheim Museum Bilbao Frank Gehry (1997)

Introduction 23 Lecture 1 Elements of Architectural Structures ARCH 614

Tjibaou Cultural Center, New Caledonia Renzo Piano

Photographer: John Gollings

Elements of Architectural Structures ARCH 614

Padre Pio Pilgrimage Church, Italy Renzo Piano

ARCH 614

Introduction 25 Lecture 1

Photographer: Michel Denancé Elements of Architectural Structures

Athens Olympic Stadium and Velodrome Santiago Calatrava (2004)

Introduction 26 Lecture 1

Introduction 24

Lecture 1

Elements of Architectural Structures ARCH 614

Milwaukee Art Museum Quadracci Pavilion (2001) Santiago Calatrava

Airport Station, Lyon, France Santiago Calatrava (1994)

Introduction 28 Lecture 1 lements of Architectural Structures ARCH 614 S2005abn

Centre Georges Pompidou, Paris
Piano and Rogers (1978)

Introduction 29

Elements of Architectural Structures
ARCH 614

S2005abn

Meyerson Symphony Center
Dallas, TX
Pei Cobb Freed & Partners

Introduction 31 Lecture 1

Elements of Architectural Structures ARCH 614

Introduction 32 Lecture 1

Elements of Architectural Structures ARCH 614

S2005abn

Introduction 34 Lecture 1

Stuttgart, Germany

(1986 -87)

Gunter Behnisch

Flements of Architectural Structures ARCH 614

S2005ahn

Introduction 33 Lecture 1

Elements of Architectural Structures ARCH 614

S2005abn

Introduction 35 Lecture 1

Elements of Architectural Structures ARCH 614

Habitat 67, Montreal

Moshe Safdie (1967)
Introduction 36
Lecture 1

ARCH 614

Lecture 1

S2005abn

Villa Savoye, Poissy, France
Le Corbusier (1929)
Introduction 37
Lecture 1

RCH 614

S2005abn

ARCH 614

Kimball Museum, Fort Worth
Kahn (1972)
Introduction 39
Elements of Architectural Structures

Architectural Space and Form

- evolution traced to developments in structural engineering and material technology
 - stone & masonry
 - timber
 - concrete
 - cast iron, steel
 - tensile fabrics, pneumatic structures.....

Introduction 40 Lecture 1

Elements of Architectural Structures

S2005abn

Stone + Masonry

- columns
- walls
- lintels
- arches

Introduction 42 Lecture 1

Flements of Architectural Structures ARCH 614

S2005abr

Architectural Space and Form

- structure is a device for channeling loads that result from the use and/or presence of the building to the ground
 - span a roof
 - hold up a floor
 - cross a river
 - suspend a canopy

www.pbs.org/wgbh/buildingbig/

Introduction 41 Lecture 1

Elements of Architectural Structures ARCH 614

S2005abn

Wood

columns

beams

trusses

Introduction 43 Lecture 1

Flements of Architectural Structures ARCH 614

Steel

- cast iron wrought iron steel
- cables
- columns
- beams
- trusses
- frames

Introduction 44

Lecture 1

Structural Components

- bearing walls
- columns
- beams
- flat plates
- trusses
- arches
- shells
- cables

Concrete

Bearing Walls

Introduction 46 Lecture 1 Elements of Architectural Structures ARCH 614

Bearing Walls

• behavior as "deep beams"

Beams & Plates

Introduction 48

Introduction 50

Lecture 1

Lecture 1

Elements of Architectural Structures

ARCH 614

S2005abn

Beams & Plates

Elements of Architectural Structures

Building Framing

Introduction 49

Introduction 51

Lecture 1

Lecture 1

• Components or Assemblages

Elements of Architectural Structures

ARCH 614

Building Framing

System Selection

evaluation of alternatives

Structural Math

- quantify environmental loads
 - how big is it?
- evaluate geometry and angles
 - where is it?
 - what is the scale?
 - what is the size in a particular direction?
- quantify what happens in the structure
 - how big are the internal forces?
 - how big should the beam be?

Elements of Architectural Structures ARCH 614

Introduction 54

Lecture 1

S2005abn

Math 4 Lecture 2 Elements of Architectural Structures
ARCH 614

Physical Math

- physics takes observable phenomena and relates the measurement with rules: mathematical relationships
- need
 - reference frame

- measure of length, mass, time, direction, velocity, acceleration, work, heat, electricity, light
- calculations & geometry

Math 5 Lecture 2 Flements of Architectural Structures

S2005abn

Basic Math

- base:
 - addition, subtraction, multiplication, division
- descriptive geometry
 - relationships existing between geometric elements such as points, lines & planes
- functions, conversions & graphs
 - relationships between quantities of numerical values
 - graphs used to avoid mental sorting and see relationships quickly

Geometric Math

- Greek architects relied on proportion
 - ratios of dimensions employed were fixed
- projective geometry
 - Renaissance
 - allowed perspective & sections
 - intersections & proportion

Melancholia - Albrecht Düre

Math 6 Lecture 2 Elements of Architectural Structures ARCH 614

S2005abr

Language

- symbols for operations: +,-, /, x
- symbols for relationships: (), =, <, >
- algorithms

cancellation	$\frac{2}{2}$	× 5 =	= 2 =	_ 2	<u> </u>
factors	5	6	6	2×3	3
– signs			\boldsymbol{x}	1	
 ratios and proportions 			— -	= -	

power of a number $10^3 = 1000$ - conversions, ex. 1X = 10 Y

- operations on both sides of equality

Elements of Architectural Structures

ARCH 614

On-line Practice

eCampus / Study Aids

Introduction 61 Lecture 1 Elements of Architectural Structures ARCH 614 S2008abn

Geometry

- angles
 - $right = 90^{\circ}$
 - acute < 90°
 - obtuse $> 90^{\circ}$
 - $-\pi = 180^{\circ}$
- triangles
 - area
 - hypotenuse
 - total of angles = 180°

$$AB^2 + AC^2 = BC^2$$

Geometry

- shapes
 - rectangle
 - triangle
 - right triangle
 - equilateral triangle
 - rhomboid
 - parallelogram

Math 9 Lecture 2 Elements of Architectural Structures ARCH 614 S2005abn

Geometry

- lines and relation to angles
 - parallel lines can't intersect

- perpendicular lines cross at 90°
- intersection of two lines is a point

 opposite angles are equal when two lines cross

Math 10 Lecture 2 Elements of Architectural Structures ARCH 614 S2005abn

Math 11 Lecture 2 Elements of Architectural Structures ARCH 614

Geometry

 intersection of a line with parallel lines results in identical angles

 two lines intersect in the same way, the angles are identical

Geometry

Math 12

 sides of two angles bisect a right angle (90°), the angles are <u>complimentary</u>

right angle bisects a straight line,
 remaining angles
 are <u>complimentary</u>

Elements of Architectural Structures ARCH 614

S2005abn

Geometry

 sides of two angles are parallel and intersect opposite way, the angles are supplementary - the sum is 180°

 two angles that sum to 90° are said to be complimentary

$$\beta + \gamma = 90^{\circ}$$

Math 13 Lecture 2 Elements of Architectural Structures ARCH 614 S2005abn

Geometry

- similar triangles have proportional sides

Trigonometry

• for right triangles

$$\sin = \frac{opposite \ side}{hypotenuse} = \sin \alpha = \frac{AB}{CB}$$

$$\cos = \frac{adjacent \ side}{hypotenuse} = \cos \alpha = \frac{AC}{CB}$$

$$\tan = \frac{opposite \ side}{adjacent \ side} = \tan \alpha = \frac{AB}{AC}$$

SOHCAHTOA

Math 16 Lecture 2 Elements of Architectural Structures ARCH 614 S2005abn

Trigonometry

- for angles starting at positive x
 - sin is y side
 - cos is x side

sin<0 for 180-360° cos<0 for 90-270° tan<0 for 90-180° tan<0 for 270-360°

Trigonometry

- cartesian coordinate system
 - origin at 0,0
 - coordinatesin (x,y) pairs
 - x & y have signs

Math 17 Lecture 2 Elements of Architectural Structures ARCH 614 S2005abn

Trigonometry

- for all triangles
 - sides A, B & C are opposite angles α , β & γ

- LAW of SINES

$$\frac{\sin \alpha}{A} = \frac{\sin \beta}{B} = \frac{\sin \gamma}{C}$$

- LAW of COSINES

$$A^2 = B^2 + C^2 - 2BC\cos\alpha$$

Math 18 Lecture 2 Elements of Architectural Structures ARCH 614 S2005abn

Math 19 Lecture 2 Elements of Architectural Structures ARCH 614

Algebra

- equations (something = something)
- constants
 - real numbers or shown with a, b, c...
- unknown terms, variables
 - names like R, F, x, y
- linear equations
 - unknown terms have no exponents
- simultaneous equations
 - variable set satisfies all equations

Math 20 Lecture 2 Elements of Architectural Structures ARCH 614 S2005abn

Algebra

- solving one equations
 - only works with one variable

Math 22

Lecture 2

$$2x-1 = 4x + 5$$

· subtract from both sides

$$2x-1-2x = 4x+5-2x$$

· subtract from both sides

$$-1-5=2x+5-5$$

divide both sides

$$\frac{-6}{2} = \frac{-3 \cdot 2}{2} = \frac{2x}{2}$$

• get x by itself on a side

$$x = -3$$

Elements of Architectural Structures ARCH 614 S2005abn

Algebra

- solving one equation
 - only works with one variable

– ex:

$$2x-1=0$$

add to both sides

$$2x - 1 + 1 = 0 + 1$$

$$2x = 1$$

divide both sides

$$\frac{2x}{2} = \frac{1}{2}$$

• get x by itself on a side

$$x = \frac{1}{2}$$

Math 21 Lecture 2 Elements of Architectural Structures ARCH 614 S2005abr

Algebra

- solving two equation
 - only works with two variables

$$2x + 3y = 8$$

• look for term similarity

$$12x - \overline{3y} = 6$$

• can we add or subtract to eliminate one term?

add

$$2x + 3y + 12x - 3y = 8 + 6$$

$$14x = 14$$

• get x by itself on a side $\frac{14x}{14} = \frac{1}{14}$

Math 23 Lecture 2 Elements of Architectural Structures ARCH 614 S2005abr

Physics for Structures

- measures
- vectors
- motion of particles
- center of mass
- equilibrium of bodies
- gravitation
- fluid mechanics
- temperature

Galileo Galilei

Math 24

Math 26

Lecture 2

Elements of Architectural Structures ARCH 614

S2005abn

Physics for Structures

- scalars any quantity
- vectors quantities with direction
 - like displacements
 - summation results in the "straight line path" from start to end

Elements of Architectural Structures ARCH 614

Physics for Structures

- measures
 - US customary & SI

Units	US	SI
Length	in, ft, mi	mm, cm, m
Volume	gallon	liter
Mass	lb mass	g, kg
Force	Ib force	N, kN
Temperature	F	С

Flements of Architectural Structures

Physics for Structures

- motion of particles
 - displacement
 - velocity
 - acceleration
 - rotation
 - cause by forces

Math 27

Lecture 2

Elements of Architectural Structures ARCH 614

S2005abr

S2005abr

Physics for Structures

- gravity
 - acceleration of mass toward the earth
 - weight or force due to gravity
- center of gravity
 - location of mass doesn't change with motion

Math 28 Lecture 2

Math 30

Lecture 2

Elements of Architectural Structures ARCH 614 S2005abr

Physics for Structures

- · fluid mechanics
 - weight of water or fluid causes pressure on any surface it interacts with
 - pressure is force over an area
 - air pressure causes forces
 - water pressure gets greater as it gets deeper

S2005abn

Physics for Structures

equilibrium of particles – no movement

Math 29 Lecture 2 Elements of Architectural Structures ARCH 614 S2005abn

Physics for Structures

- temperature
 - atoms respond to heat (physical chemistry)
 - · with heat solid goes to liquid goes to gas
 - excited electrons move apart
 - · movement is linear
 - base 0 or freezing at the temperature water freezes at

http://www.physics.umd.edu/

Math 31 Lecture 2 Elements of Architectural Structures ARCH 614