ELEMENTS OF **A**RCHITECTURAL **S**TRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 614

DR. ANNE NICHOLS

SPRING 2014

lecture SEVEN

shear & bending moment diagrams

Equilibrium Method

- important places
 - supports
 - concentrated loads
 - start and end of distributed loads
 - concentrated moments
- free ends
 - zero forces

Semigraphical Method

- by knowing
 - area under loading curve = change in V
 - area under shear curve = change in M
 - concentrated forces cause "jump" in V
 - concentrated moments cause "jump" in M

$$V_D - V_C = -\int_C^{X_D} w dx \qquad M_D - M_C = \int_C^{X_D} V dx$$

$$x_C \qquad \qquad x_C$$

Semigraphical I

relationships

Figure 7.11 Relationship of load, shear, Element moment, slope, and deflection diagrams.

Semigraphical Method

• M_{max} occurs where V = 0 (calculus)

Curve Relationships

- integration of functions
- line with 0 slope, integrates to sloped

ex: load to shear, shear to moment

Curve Relationships

line with slope, integrates to parabola

ex: load to shear, shear to moment

Curve Relationships

parabola, integrates to 3rd order curve

ex: load to shear, shear to moment

Basic Procedure

1. Find reaction forces & moments

Plot axes, underneath beam load
diagram

V:

- 2. Starting at left
- 3. Shear is 0 at free ends
- 4. Shear jumps with concentrated load
- 5. Shear changes with area under load

Basic Procedure

M:

- 6. Starting at left
- 7. Moment is 0 at free ends
- 8. Moment jumps with moment
- 9. Moment changes with area under V
- 10. Maximum moment is where shear = 0! (locate where V = 0)

Triangle Geometry

slope of V is w (-w:1)

Parabolic Shapes

cases

up fast, then slow

up slow, then fast down fast, then slow down slow, then fast

Deflected Shape & M(x)

- -M(x) gives shape indication
- boundary conditions must be met

Boundary Conditions

- at pins, rollers, fixed supports: y = 0
- at fixed supports: $\theta = 0$
- at inflection points from symmetry: $\theta = 0$
- y_{max} at $\frac{dy}{dx} = 0$

Tabulated Beam Formulas

how to read charts

SIMPLE BEAM—UNIFORMLY DISTRIBUTED LOAD

Total Equiv. Uniform Load . . . =
$$wl$$

R = V = $\frac{wl}{2}$

Vx = $w\left(\frac{l}{2} - x\right)$

M max. (at center) . . . = $\frac{wl^2}{8}$

Mx = $\frac{wx}{2}(l-x)$
 Δmax . (at center) . . . = $\frac{5wl^4}{384 \text{ El}}$
 Δx = $\frac{wx}{24\text{El}}(l^3 - 2lx^2 + x^3)$