ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN ARCH 614 DR. ANNE NICHOLS Spring 2014

three

equilibrium and planar trusses

Equilibrium 1 Lecture 3

Equilibrium

- balanced
- steady
- resultant of forces on a particle is 0

Equilibrium on a Point

analytically

$$R_x = \sum F_x = 0$$
$$R_y = \sum F_y = 0$$

http://www.physics.umd.edu

• Newton convinces us it will stay at rest

Equilibrium on a Point

- collinear force system
 - ex: cables

$$\sum F_{in-line} = 0$$

$\left(\begin{array}{c}R_x = \sum F_x = 0 \\ R_y = \sum F_y = 0\end{array}\right)$

Equilibrium on a Point

- concurrent force system
 - ex: cables $R_x = \sum F_x = 0$ $R_y = \sum F_y = 0$

- FBD (sketch)
- tool to see all forces on a body or a point including
 - external forces
 - weights
 - force reactions
 - internal forces

- determine point
- FREE it from:
 - ground
 - supports & connections
- draw all external forces acting ON the body
 - reactions
 (supporting forces)
 - applied forces
 - gravity

- sketch FBD with relevant geometry
- resolve each force into components
 - known & unknown <u>angles</u> name them
 - known & unknown forces name them
- are any forces related to other forces?
- for the unknowns
- write only as many equilibrium equations as needed
- solve up to 2 equations

- solve equations
 - most times 1 unknown easily solved
 - plug into other equation(s)
- common to have unknowns of
 - force magnitudes
 - force angles

Force Reactions

- result of applying force
- unknown size
- connection or support type
 - known direction
 - related to motion prevented

Friction

- resistance to movement
- contact surfaces determine μ
- proportion of normal force (⊥)
 opposite to slide direction
 - static > kinetic

 $F = \mu N$

Elements of Architectural Structures ARCH 614 S2014abn

Cable Reactions

- equilibrium:
 - more reactions (4) than equations
 - but, we have slope relationships
 - x component the same everywhere

Cable-Stayed Structures

- diagonal cables support horizontal spans
- typically symmetrical
- Patcenter,
 Rogers 1986

Elements of Architectural Structures ARCH 614 www.columbia.edu

Patcenter, Rogers 1986

- column free space
- roof suspended
- solid steel ties
- steel frame supports masts

Patcenter, Rogers 1986

dashes – cables pulling

Figure 3.5: Patcenter, load path diagram.

- ancient (?) wood
 Romans 500 B.C.
- Renaissance revival
- 1800's analysis
- efficient

- analogous to cables and struts

Equilibrium 17 Lecture 3 Elements of Architectural Structures ARCH 614 S2014abn

- comprised of straight members
- geometry with triangles is stable
- loads applied only at pin joints

http:// nisee.berkeley.edu/godden

Elements of Architectural Structures ARCH 614 S2014abn

- 2 force members
 - forces in line, equal and opposite
 - compression
 - tension

- 3 members connected by 3 joints
- 2 more members need 1 more joint b = 2n - 3

compression and tension

- statically determinate
- indeterminate
- unstable

b = 16

n = 10 b = 16 < 2(10) - 3 = 17(Too few members—square panel is unstable)

(c) Unstable.

Trusses

common designs

Trusses

common designs

Trusses

- USES
 - roofs & canopies
 - long spans
 - lateral bracing

Truss Connections

• "pins"

http:// nisee.berkeley.edu/godden

(c)

Figure 4.8: Truss joints.

Equilibrium 25 Lecture 3 Elements of Architectural Structures ARCH 614 S2014abn

Sainsbury Center, Foster 1978

Equilibrium 26 Lecture 3 Elements of Architectural Structures ARCH 614 S2014abn

Sainsbury Center, Foster 1978

Truss Analysis

• visualize compression and tension from deformed shape

Truss Analysis

- Method of Joints
- Graphical Methods
- Method of Sections

- all rely on equilibrium
 of bodies
 - internal equilibrium

Method of Joints

- isolate each joint
- enforce
 equilibrium in
 F_x and F_y
- can find all forces

- long
- easy to mess up

Joint Cases

two bodies connected

Joint Cases

• three bodies with two in line

Joint Cases

crossed

Tools – Multiframe

• in computer lab

Tools – Multiframe

Equilibrium 35 Lecture 3 Elements of Architectural Structures ARCH 614 S2014abn

Tools – Multiframe

- to run analysis choose - Analyze menu • Linear
- plot • - choose o
- results
 - choose options

	5110				Buckling Modal Time history	
					Batch Analysis	
					Calculate Al	t+=
nf	inn	C		1.0		
St	atic Case	R : Load	Case 1	Px'	0.004	7
4			4	KID 0.007		
2	1		2	-0.007		
3	2		2	-0.001		
4	2		3	0.001		
5	3	1.1.1	1	0.001		
6	3		3	-0.001		
7	4		2	0.004		
8	4		4	-0.004		
1	A Membe	er Actio	ns 🖌 Ma	Actions		
1	Membe	er Actio	ns 🖌 Ma	x Actions	tructures	lab

Case

 Φ

Analyse

Linear

Nonlinear...

Time Window Help

4abn

Eauilibrium 36 Lecture 3