ELEMENTS OF **A**RCHITECTURAL **S**TRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 614

DR. ANNE NICHOLS

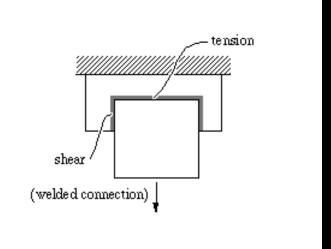
SPRING 2014

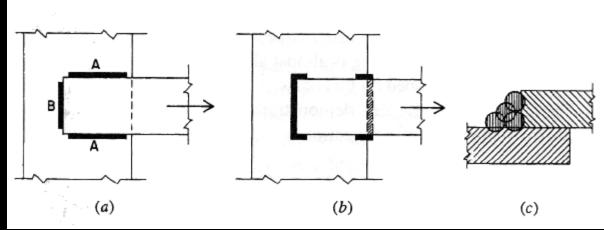
twenty

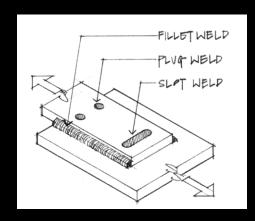
steel construction: welds & light gages

nrmc.org

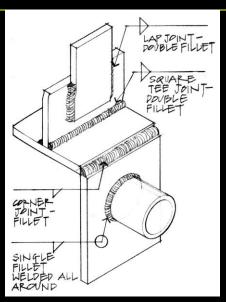
Welds

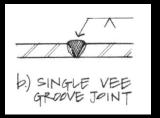

welded steel connections

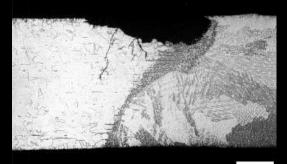


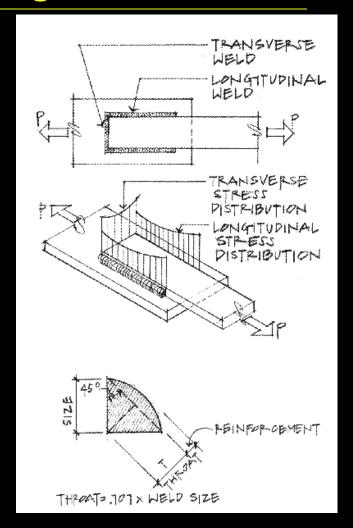

http://courses.civil.ualberta.ca

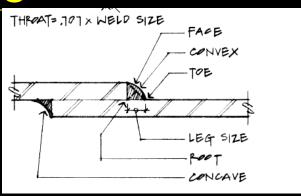
- considerations
 - shear stress
 - yielding
 - rupture




- weld terms
 - butt weld
 - fillet weld
 - plug weld
 - throat
- field welding
- shop welding


(AISC - Steel Structures of the Everyday)


- weld process
 - melting of material
 - melted filler electrode
 - shielding gas / flux
 - potential defects
- weld materials
 - *E60XX*
 - -E70XX $F_{EXX} = 70 \text{ ksi}$



500 µm

- shear failure assumed
- throat
 - -T = 0.707 x weld size
- area
 - -A = Tx length of weld
- weld metal generally stronger than base metal (ex. $F_y = 50$ ksi)

- minimum
 - table
- maximum
 - material thickness (to 1/4")
 - 1/16" less
- min. length
 - 4 x size min.
 - $\ge 1 \frac{1}{2}$ "

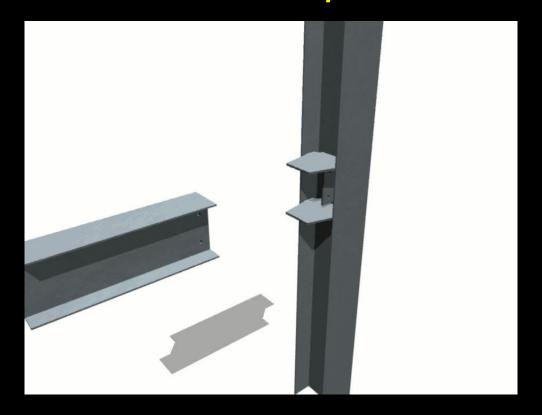
TABLE J2.4 Minimum Size of Fillet Welds							
Material Thickness of	Minimum Size of						
Thicker Part Joined, in. (mm)	Fillet Weld[a] in. (mm)						
To $\frac{1}{4}$ (6) inclusive	¹ / ₈ (3)						
Over $\frac{1}{4}$ (6) to $\frac{1}{2}$ (13)	³ / ₁₆ (5)						
Over $\frac{1}{2}$ (13) to $\frac{3}{4}$ (19)	¹ / ₄ (6)						
Over $\frac{3}{4}$ (19)	⁵ / ₁₆ (8)						
[a] Leg dimension of fillet welds. Single pass welds must [b] See Section J2.25 for maximum size of fillet welds.	be used.						

shear

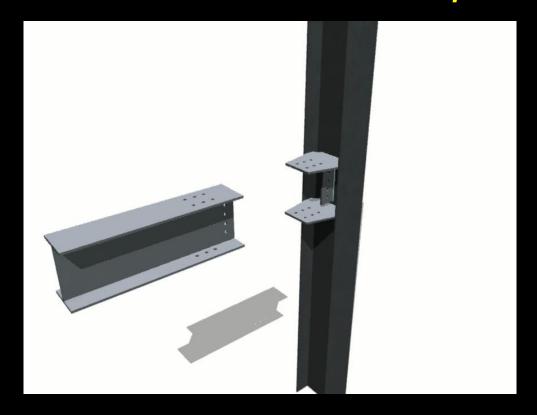
$$R_a \le \frac{R_n}{\Omega}$$
 $R_u \le \phi R_n$
 $\phi = 0.75$

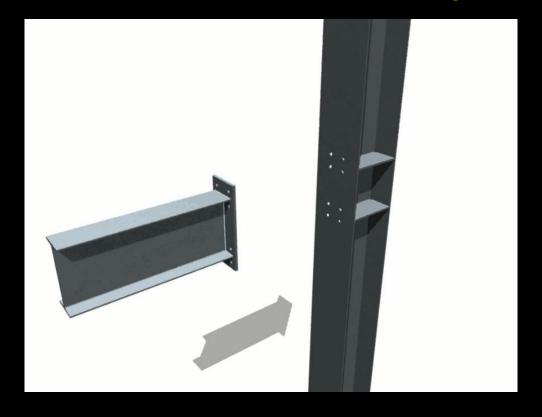
$$R_n = 0.6F_{EXX}Tl = Sl$$
 area

- table for ϕ S


	Strength of Fil					
per inch of weld (ϕ S)						
Weld Size	E60XX	E70XX				
(in.)	(k/in.)	(k/in.)				
¾6	3.58	4.18				
1/4	4.77	5.57				
⁵ ∕16	5.97	6.96				
3/8	7.16	8.35				
7/16	8.35	9.74				
1/2	9.55	11.14				
5/8	11.93	13.92				
3/4	14.32	16.70				

(not considering increase in throat with submerged arc weld process)

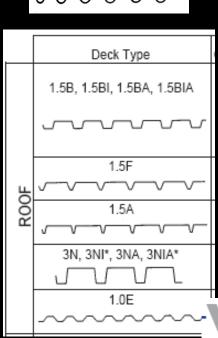

welded example (shear)

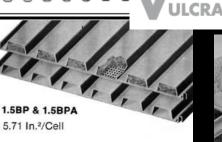

welded moment example

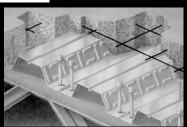
welded/bolted moment example

welded/bolted moment example

Light-gage Steel


- sheet metal
 - shaped
 - studs, panels,window frames
 - gage
 - based on weight of 41.82 lb/ft² / inch of thickness
 - 24, 22, 18, 16, i.e.
 - 0.0239, 0.0329, 0.0474, 0.0598 in
 - 0.6, 0.85, 1.0, 1.3, 1.6 mm


http://nisee.berkeley.edu/godden


Steel Decks

- "Texas" style
 - corrugated
- common
 - -1-3 spans
 - can be insulated
 - composite
 - · with concrete

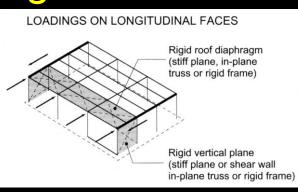


Steel Decks

load tables

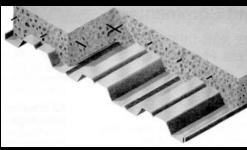
VERTICAL LOADS FOR TYPE 3N

		Max.	Allowable Total (Dead + Live) Uniform Load (PSF)										
No. of	Deck	SDI Const.	Span (ftin.) C. to C. of Support										
Spans	Type	Span	10'-0	10'-6	11'-0	11'-6	12'-0	12'-6	13'-0	13'-6	14'-0	14'-6	15'-0
	N22	11'-7	51	46	42	38	35	32	30	28	26	24	23
	N21	12'-5	59	53	47	43	39	36	33	30	28	26	25
	N20	13'-2	66	58	52	47	42	38	35	33	30	28	26
1	N19	14'-7	79	69	61	55	50	45	41	38	35	32	30
	N18	15'-11	91	80	71	63	57	52	47	43	40	37	34
	N16	18'-6	119	105	93	83	74	66	60	55	50	46	43
	N22	14'-9	58	52	48	44	40	37	34	32	29	27	26
	N21	15'-9	66	60	55	50	46	42	39	36	34	32	29
	N20	16'-6	74	67	61	56	51	47	44	40	38	35	33
2	N19	18'-1	88	80	73	66	61	56	52	48	45	42	39
	N18	19'-5	100	91	83	76	69	64	59	55	51	47	44
	N16	22'-3	126	114	104	95	87	81	74	69	64	60	56
	N22	14'-9	70	65	60	55	50	46	43	40	37		
	N21	15'-9	83	75	68	63	58	53	49	45	42		
	N20	16'-6	92	83	76	70	64	59	54	50	47		
3	N19	18'-1	110	100	91	83	76	70	65	60	56		
	N18	19'-5	125	113	103	94	87	80	74	68	64		
	N16	22'-3	157	143	130	119	109	101	93	86	80		


Notes: 1. Load tables are calculated using sectional properties based on the steel design thickness shown in the Steel Deck Institute (SDI) Design Manual.

Loads shown in the shaded areas are governed by the live load deflection not in excess of 1/240 of the span. A dead load of 10 PSF has been included.

^{3. 3}N, NI, NA, NIA are not covered under Factory Mutual.


Steel Decks

- common fire proofing
 - cementicious spray
 - composite concrete
- non-composite
 - concrete is fill
- lateral bracing
- diaphragm action

ARCH 614

