ELEMENTS OF ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

Dr. Anne Nichols Spring 2014

lecture SIXteen

steel construction: materials & beams

Steel Beam Design

- American Institute of Steel Construction
 - Manual of Steel Construction
 - ASD & LRFD
 - combined in 2005

Steel Materials

- steel grades
 - ASTM A36 carbon
 - plates, angles
 - $F_y = 36 \text{ ksi} \& F_u = 58 \text{ ksi}$

- ASTM A572 high strength low-alloy
 - some beams
 - $F_v = 60 \text{ ksi } \& F_u = 75 \text{ ksi}$
- ASTM A992 for building framing
 - <u>most beams</u>
 - $F_v = 50 \text{ ksi} \& F_u = 65 \text{ ksi}$

Steel Properties

- high strength to weight ratio
- elastic limit yield (F_y)
- inelastic plastic
- ultimate strength (F_u)
- ductile
- strength sensitive to temperature
- can corrode
- fatigue

Winnepeg DOT S2014abn

Steel Beams 4 Lecture 16 Elements of Architectural Structures ARCH 614

strain hardening

Structural Steel

- standard rolled shapes (W, C, L, T)
- open web joists
- plate girders
- decking

Elements of Architectural Structures ARCH 614

Steel Construction

- welding
- bolts

Elements of Architectural Structures ARCH 614 http://courses.civil.ualberta.ca S2014abn

Unified Steel Design

• ASD

- bending (braced) $\Omega = 1.67$
- bending (unbraced^{*}) $\Omega = 1.67$
- shear $\Omega = 1.5 \text{ or } 1.67$
- shear (bolts & welds) $\Omega = 2.00$
- shear (welds) $\Omega = 2.00$

* flanges in compression can buckle

Unified Steel Design

braced vs.
 unbraced

ARCH 614

LRFD

- loads on structures are
 - not constant

- can be more influential on failure
- happen more or less often
- UNCERTAINTY

$$R_{u} = \gamma_{D} R_{D} + \gamma_{L} R_{L} \leq \phi R_{n}$$

 ϕ - resistance factor γ - load factor for (D)ead & (L)ive load

LRFD Steel Beam Design

- *limit state is yielding <u>all across section</u>*
- outside elastic range
- load factors & resistance factors

LRFD Load Combinations

- 1.4D
- $1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$
- $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W)$
- $1.2D + 1.0W + L + 0.5(L_r \text{ or } S \text{ or } R)$
- 1.2D + 1.0E + L + 0.2S
- 0.9D + 1.0W
- 0.9D + 1.0E
 - F has same factor as D in 1-5 and 7
 - H adds with 1.6 and resists with 0.9 (permanent)

Steel Beams 11 Lecture 16 Elements of Architectural Structures ARCH 614

Beam Design Criteria (revisited)

- strength design
 - bending stresses predominate
 - shear stresses occur
- serviceability
 - limit deflection
 - stability
- superpositioning
 - use of beam charts
 - elastic range only!
 - "add" moment diagrams
 - "add" deflection CURVES (not maximums)

Steel Beams 12 Lecture 16

Steel Beams

- lateral stability bracing
- local buckling stiffen, or bigger I_v

Local buckling of compression flange.

Local Buckling

- steel I beams
- flange
 - buckle in direction of smaller radius of gyration
- web
 - force"crippling"

Elements of Architectural Structures ARCH 614

Local Buckling

• flange

Figure 2-5. Flange Local Bending Limit State (Beedle, L.S., Christopher, R., 1964)

• web

Figure 2-7. Web Local Buckling Limit State (SAC Project)

Elements of Architectural Structures ARCH 614

Shear in Web

- panels in plate girders or webs with large shear
- buckling in compression direction
- add stiffeners

Shear in Web

plate girders and stiffeners

Steel Beams 17 Lecture 16 Elements of Architectural Structures ARCH 614 S2014abn

http:// nisee.berkeley.edu/godden

Steel Beams

- bearing

 provide
 adequate
 area
 - prevent
 local yield
 of flange
 and web

Figure 9.10 Considerations for bearing in beams with thin webs, as related to web crippling (buckling of the thin web in compression).

Elements of Architectural Structures ARCH 614

LRFD - Flexure

$$\Sigma \gamma_i R_i = M_u \leq \phi_b M_n = 0.9 F_y Z$$

 M_u - maximum moment ϕ_b - resistance factor for bending = 0.9 M_n - nominal moment (ultimate capacity) F_y - yield strength of the steel Z - plastic section modulus*

Internal Moments - at yield

Internal Moments - ALL at yield

- all parts reach yield
- plastic hinge forms
- ultimate moment
- $A_{tension} = A_{compression}$

$$M_p = bc^2 f_y = \frac{3}{2} M_y$$

Elements of Architectural Structures ARCH 614

n.a. of Section at Plastic Hinge

- cannot guarantee at centroid
- $f_{y} A_1 = f_{y} A_2$
- moment found from yield stress times
 <u>moment area</u>

$$M_{p} = f_{y}A_{1}d = f_{y}\sum_{n,a}A_{i}d_{i}$$

Elements of Architectural Structures ARCH 614

Plastic Hinge Development

Steel Beams 23 Lecture 16

Plastic Hinge Examples

stability can be effected

Plastic Section Modulus

Steel Beams 25 Lecture 16 Elements of Architectural Structures ARCH 614

LRFD - Shear

 $\Sigma \gamma_i R_i = V_u \le \phi_v V_n = 1.0(0.6F_{yw}A_w)$

 V_u - maximum shear ϕ_v - resistance factor for shear = 1.0 V_n - nominal shear F_{yw} - yield strength of the steel in the web A_w - area of the web = t_w d

LRFD - Flexure Design

- limit states for beam failure
 - 1. yielding

- $L_p = 1.76r_{y}$
- 2. lateral-torsional buckling*
- 3. flange local buckling
- 4. web local buckling
- minimum M_n governs

$$\Sigma \gamma_i R_i = M_u \leq \phi_b M_u$$

F

Compact Sections

- plastic moment can form before any buckling
- \bullet

Lateral Torsional Buckling

 $M_{n} = C_{b} \begin{bmatrix} moment based on \\ lateral buckling \end{bmatrix} \leq M_{p}$ $y = \frac{12.5M_{max}}{2.5M_{max} + 3M_{A} + 4M_{B} + 3M_{C}}$ $C_{\rm b} = modification$ factor *M_{max}* - *[max moment], unbraced segment* M_{A} - [moment], 1/4 point $M_{\rm B} = |moment|$, center point $M_{\rm C} = |moment|, 3/4 \text{ point}$

Steel Beams 29 Lecture 16 Elements of Architectural Structures ARCH 614

Beam Design Charts

Steel Beams Lecture 16

Charts & Deflections

- beam charts
 - solid line is most economical
 - dashed indicates there is another more economical section
 - self weight is NOT included in M_n
- deflections
 - no factors are applied to the loads
 - often governs the design

Design Procedure (revisited)

- 1. Know unbraced length, material, design method (Ω, ϕ)
- 2. Draw V & M, finding M_{max}
- 3. Calculate $Z_{req'd}$ $(M_a \le M_n/\Omega)$ $(M_u \le \phi_b M_n)$
- 4. <u>Choose (economical) section from</u> <u>section or beam capacity charts</u>

Beam Charts by Z_x (pg. 250)

				-			•							
	Z _x in. ³		$F_y = 3$	36 ksi			$F_y = 5$	50 ksi		r _y in.	$b_f/2t_f$	h/t _w	X ₁ ksi	$\frac{X_2 \times 10^6}{(1/\mathrm{ksi})^2}$
Designation		L _p ft	L _r ft	M _p kip-ft	M, kip-ft	$\frac{L_p}{\text{ft}}$	L _r ft	M _p kip-ft	M _r kip-ft					
W 33 × 141	514	10.1	30.1	1,542	971	8.59	23.1	2,142	1,493	2.43	6.01	49.6	1,800	17,800
$W 30 \times 148$	500	9.50	30.6	1,500	945	8.06	22.8	2,083	1,453	2.28	4.44	41.6	2,310	6,270
W 24 \times 162	468	12.7	45.2	1,404	897	10.8	32.4	1,950	1,380	3.05	5.31	30.6	2,870	2,260
W 24 \times 146	418	12.5	42.0	1,254	804	10.6	30.6	1,742	1,237	3.01	5.92	33.2	2,590	3,420
W 33 × 118	415	9.67	27.8	1,245	778	8.20	21.7	1,729	1,197	2.32	7.76	54.5	1,510	37,700
W 30×124	408	9.29	28.2	1,224	769	7.88	21.5	1,700	1,183	2.23	5.65	46.2	1,930	13,500
$W 21 \times 147$	373	12.3	46.4	1,119	713	10.4	32.8	1,554	1,097	2.95	5.44	26.1	3,140	1,590
W 24 \times 131	370	12.4	39.3	1,110	713	10.5	29.1	1,542	1,097	2.97	6.70	35.6	2,330	5,290
W 18 $ imes$ 158	356	11.4	56.5	1,068	672	9.69	38.0	1,483	1,033	2.74	3.92	19.8	4,410	403
W 30 × 108	346	8.96	26.3	1,038	648	7.60	20.3	1,442	997	2.15	6.89	49.6	1,680	24,200
W 27 \times 114	343	9.08	28.2	1,029	648	7.71	21.3	1,429	997	2.18	5.41	42.5	2,100	9,220
W 24 \times 117	327	12.3	37.1	981	631	10.4	27.9	1,363	970	2.94	7.53	39.2	2,090	8,190
$W 21 \times 122$	307	12.2	41.0	921	592	10.3	29.8	1,279	910	2.92	6.45	31.3	2,630	3,160
W 18 × 130	290	11.3	4 7. 7	870	555	9.55	32.8	1,208	853	2.7	4.65	23.9	3,680	810
W 30 × 90	283	8.71	24.8	849	531	7.39	19.4	1,179	817	2.09	8.52	57.5	1.410	49,600
W 24 \times 103	280	8.29	27.0	840	531	7.04	20.0	1,167	817	1.99	4.59	39.2	2,390	5,310
W 27 \times 94	278	8.83	25.9	834	527	7.50	19.9	1,158	810	2.12	6.70	49.5	1,740	19,900
w 14 \times 145 w 24 \times 94	260 254	16.6 8.25	81.6 25.9	780	503 481	14.1 7.00	54.7 19.4	1,083 1,058	773 740	3.98 1.98	7.11 5.18	16.8 41.9	4,400 2,180	348 7,800

TABLE 9.1 Load Factor Resistance Design Selection for Shapes Used as Beams

4*. Include self weight for M_{max}

and repeat 3 & 4
 if necessary

5. Consider lateral stability Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper

Elements of Architectural Structures ARCH 614

6. Evaluate shear stresses - horizontal • $(V_a \le V_n / \Omega)$ or $(V_u \le \phi_v V_n)$

• Wand rectangles $f_{v-\max}$

 $=\frac{3V}{2A}\approx\frac{V}{A_{web}}$

 $V_n = 0.6 F_{yw} A_w$

• general

7. Provide adequate bearing area at supports

8. Evaluate torsion

 $(f_v \leq F_v)$

• circular cross section $f_v = \frac{T\rho}{D}$

• rectangular $f_{v} = \frac{T}{c_{1}ab^{2}}$

TABLE 3.1. Coefficients for Rectangular Bars in Torsion

a/b	<i>c</i> ₁	<i>C</i> ₂
1.0	° 0.208	0.1406
1.2	0.219	0.1661
1.5	0.231	0.1958
2.0	0.246	0.229
2.5	0.258	0.249
3.0	0.267	0.263
4.0	0.282	0.281
5.0	0.291	0.291
10.0	0.312	0.312
∞	0.333	0.333

Steel Beams 37 Lecture 16 Elements of Architectural Structures ARCH 614

<u>32014ann</u>

9. Evaluate deflections – NO LOAD FACTORS

Steel Beams 38 Lecture 16 Elements of Architectural Structures ARCH 614

Load Tables & Equivalent Load

- uniformly distributed loads
- equivalent "w"

							-R		D							
		Ba	S sed on a	TANDAR 50 ksi M	D LOAD aximum	TABLE I Yield Str	FOR OP rength -	EN WEB Loads S	STEEL J hown in	OISTS, I Pounds	K-SERIE	S ar Foot (plf)			
Joist Designation	8K1	10K1	12K1	12K3	12K5	14K1	14K3	14K4	14K6	16K2	16K3	16K4	16K5	16K6	16K7	16K9
Depth (in.)	8	10	12	12	12	14	14	14	14	16	16	16	16	16	16	16
Approx. Wt (lbs./ft.)	5.1	5.0	5.0	5.7	7.1	5.2	6.0	6.7	7.7	5.5	6.3	7.0	7.5	8.1	8.6	10.0
Span (ft.) ∳ 8	825 550							loa	nd fe	or li	ίνρ	loa	da	lofla	octi	on li
9	825 550							100		<i>)</i>	VC	100	uu	CIIC	<i>.</i> 00	
10	825 480	825 550							in	RF		tot	al i	n R	A	CK
11	798 377	825 542									- <i>-</i> ,	.01			-/ \	
12	666 288	825 455	825 550	825 550	825 550											
13	565 225	718 363	825 510	825 510	825 510											
14	486 179	618 289	750 425	825 463	825 463	825 550	825 550	825 550	825 550							
15	421 145	537 234	651 344	814 428	825 434	766 475	825 507	825 507	825 507							
16	369 119	469 192	570 282	714 351	825 396	672 390	825 467	825 467	825 467	825 550	825 550	825 550	825 550	825 550	825 550	825 550
17		415 159	504 234	630 291	825 366	592 324	742 404	825 443	825 443	768 488	825 526	825 526	825 526	825 526	825 526	825 526
18		369 134	448 197	561 245	760 317	528 272	661 339	795 397	825 408	684 409	762 456	825 490	825 490	825 490	825 490	825 490
19		331 113	402	502 207	681 269	472 230	592 287	712 336	825 383	612 347	682 386	820 452	825 455	825 455	825 455	825 455
20		298 97	361 142	453	613 230	426 197	534 246	642 287	787	552 297	615 330	739 386	825 426	825 426	825 426	825 426
21			327 123	409	555 198	385 170	483	582 248	712	499 255	556 285	670 333	754	822 405	825 406	825 406
22			298 106	373	505 172	351 147	439 184	529 215	648 259	454	505 247	609 289	687 323	747	825 385	825 385
23			271 93	340 116	462	321 128	402	483 188	592 226	415 194	462	556 252	627 282	682 307	760 339	825 363

max

equivalent

Steel Arches and Frames

 solid sections or open web

http:// nisee.berkeley.edu/godden

Steel Beams 40 Lecture 16 Elements of Architectural Structures ARCH 614

Steel Shell and Cable Structures

Approximate Depths

