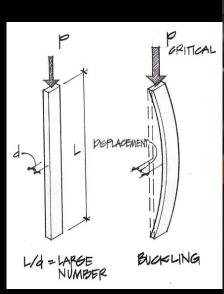
ELEMENTS OF **A**RCHITECTURAL **S**TRUCTURES:

Form, Behavior, and Design arch 614 Dr. Anne Nichols Spring 2014

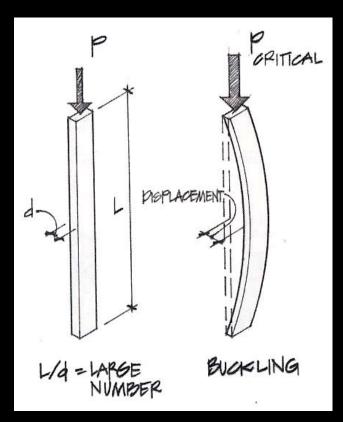
fourteen

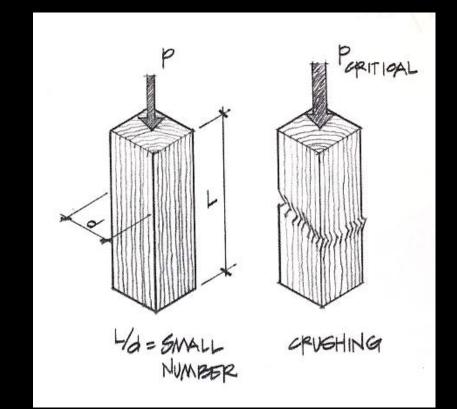

wood construction: column design

Wood Columns 1 Lecture 14 Elements of Architectural Structures ARCH 614 S2014abn

Compression Members (revisited)

- designed for strength & stresses
- designed for serviceability & deflection
- need to design for <u>stability</u>
 - ability to support a specified load without sudden or unacceptable deformations

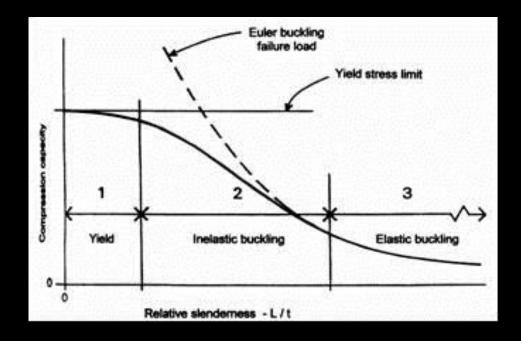



Elements of Architectural Structures ARCH 614 S2014abn

Effect of Length (revisited)

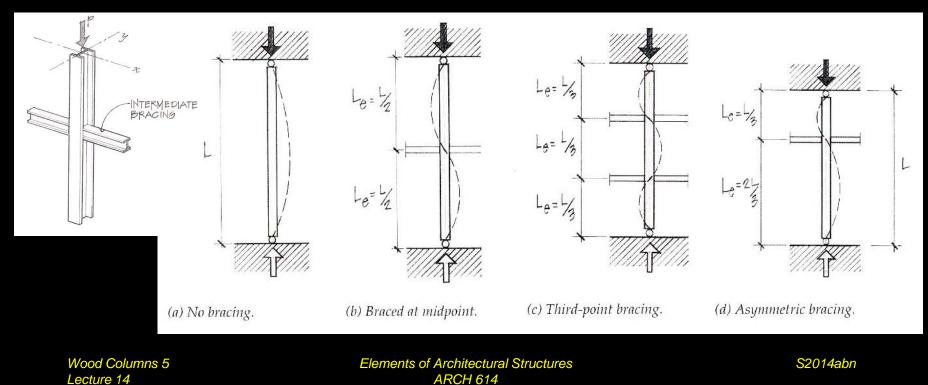
long & slender

short & stubby



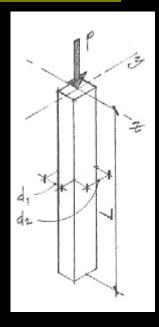
Elements of Architectural Structures ARCH 614

Critical Stresses (revisited)


- when a column gets stubby, crushing will limit the load
- real world has loads with eccentricity

Bracing (revisited)

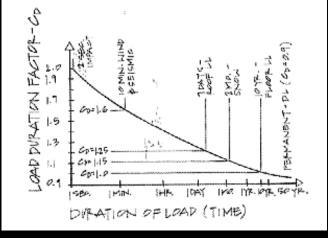
• bracing affects shape of buckle in one direction


both should be checked!

Wood Columns

- slenderness ratio = $L/d_{min} = L/d_1$
 - $-d_1 = smaller dimension$ $-\ell_e/d \le 50 (max)$

$$f_c = \frac{P}{A} \le F_c'$$



- where F'_c is the allowable compressive strength parallel to the grain - bracing common

Allowable Wood Stress

$$F'_{c} = F_{c}(C_{D})(C_{M})(C_{t})(C_{F})(C_{p})$$

ere:

 $F_c = compressive strength$ parallel to grain $C_{D} = load duration factor$ $C_{M} = wet service factor$ (1.0 dry) C_t = temperature factor C_{F} = size factor $C_{p} = column stability factor$

(Table 5.2)

F_{cE}

Elements of Architectural Structures ARCH 614 S2014abn

Strength Factors

wood properties and load duration, C_D
 short duration
 higher loads
 normal duration
 > 10 years

• stability, C_p

- combination curve - tables

Elements of Architectural Structures ARCH 614

 $F_{c}' = F_{c}^{*}C_{p} = (F_{c}C_{D})C_{p}$

http://www.swst.org/teach/set2/struct1.html

C_p Charts

Column Stability Factor Cp

			"C	rt. p F	' = C _p . F _c	F _{CE}	for sawn posts	$f_{CE} = \frac{418}{(1.7d)^2} $ for Glu-Lam posts			
Fce Fc	Sawn Cp	Glu-Lani	$\frac{F_{CL}}{F_{c}^{2}}$	Sawn C _p	Glu-Lam C _p	Fen Fé	Sawn C _p	Giu-Lam C _p	F _{CF} Fc	Sawn C _p	Glu-Lam C _p
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09	0.000 0.010 0.020 0.030 0.040 0.049 0.059 0.059 0.069 0.079 0.088	0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.069 0.079 0.089	0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69	0.500 0.506 0.512 0.518 0.524 0.530 0.536 0.542 0.542 0.548 0.553	0.538 0.545 0.559 0.559 0.566 0.573 0.580 0.587 0.583 0.593 0.600	1.20 1.22 1.24 1.26 1.28 1.30 1.32 1.34 1.36 1.38	0.750 0.755 0.760 0.764 0.769 0.773 0.777 0.781 0.785 0.789	0.822 0.826 0.831 0.836 0.840 0.844 0.848 0.852 0.855 0.859	2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85	0.894 0.897 0.899 0.901 0.904 0.906 0.908 0.910 0.912 0.914	0.940 0.941 0.943 0.946 0.946 0.947 0.949 0.950 0.950 0.951 0.952
0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19	0.098 0.107 0.117 0.126 0.136 0.145 0.154 0.164 0.164 0.173 0.182	0.099 0.109 0.118 0.128 0.138 0.147 0.157 0.157 0.167 0.167 0.186	0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79	0.559 0.564 0.569 0.575 0.580 0.585 0.590 0.595 0.600 0.605	0.607 0.513 0.619 0.626 0.632 0.638 0.644 0.650 0.655 0.661	1.40 1.42 1.44 1.46 1.48 1.50 1.52 1.54 1.56 1.58	0.793 0.796 0.800 0.603 0.807 0.810 0.813 0.816 0.819 0.822	0.882 0.865 0.868 0.871 0.874 0.877 0.879 0.882 0.882 0.884 0.887	2.90 2.95 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35	0.916 0.917 0.919 0.920 0.922 0.923 0.925 0.926 0.926 0.929	0.953 0.954 0.955 0.956 0.957 0.958 0.959 0.960 0.961 0.961

Wood Columns 9 Lecture 14 Elements of Architectural Structures ARCH 614

Procedure for Analysis

- 1. calculate L /dmin
 - KL/d each axis, choose largest
- 2. obtain F'_{c}

 - compute $F_{cE} = \frac{K_{cE}E}{\left(\frac{L_e}{d}\right)^2}$ $K_{cE} = 0.3 \text{ sawn}$
 - $K_{cF} = 0.418 \, glu$ -lam
- 3. compute $F_c^* \approx F_c C_D$ 4. calculate F_{cE}/F_{c}^{*} and get C_{p} (chart) 5. calculate $F'_{c} = F^{*}_{c}C_{n}$

Procedure for Analysis (cont'd)

- 6. compute $P_{allowable} = F'_c \cdot A$
 - or find $f_{actual} = P/A$

7. is $P \leq P_{allowable}$? (or $f_{actual} \leq F'_c$?)

- yes: OK
- no: overstressed & no good

Procedure for Design

- 1. guess a size (pick a section)
- 2. calculate L_e/d_{min}
 - KL/d each axis, choose largest
- 3. obtain F'_{c}
 - compute $F_{cE} = \frac{K_{cE}E}{\left(\frac{L_e}{d}\right)^2}$ $K_{cE} = 0.3 \text{ sawn}$

 - $K_{cF} = 0.418 \, glu$ -lam
- 4. compute $F_c^* \approx F_c C_D$
- 5. calculate F_{cE}/F_{c}^{*} and get C_{p} (chart)

Procedure for Design (cont'd)

- 6. calculate $F_c' = F_c^* C_p$
- 7. compute $P_{allowable} = F'_c \cdot A$
 - or find $f_{actual} = P/A$
- 8. is $P \leq P_{allowable}$? (or $f_{actual} \leq F'_c$?)
 - yes: OK
 - no: pick a bigger section and **go back to step 2**.

Specific Column Charts

Column	Section		Unbraced Length (ft)											
Nominal Size	Area (in. ²)	6	8	10	12	14	16	18	20	22	24	26		
4×4	12.25	11.1	7.28	4.94	3.50	2.63		20 X						
4×6	19.25	17.4	11.4	7.76	5.51	4.14								
4×8	25.375	22.9	15.1	10.2	7.26	6.46								
6×6	30.25	27.6	24.8	20.9	16.9	13.4	10.7	8.71	7.17	6.53				
6×8	41.25	37.6	33.9	28.5	23.1	18.3	14.6	11.9	9.78	8.91		• .		
6×10	52.25	47.6	43.0	36.1	29.2	23.1	18.5	15.0	13.4	11.3				
8×8	56.25	54.0	51.5	48.1	43.5	38.0	32.3	27.4	23.1	19.7	16.9	14.6		
8×10	71.25	68.4	65.3	61.0	55.1	48.1	41.0	34.7	29.3	24.9	21.4	18.4		
8×12	86.25	82.8	79.0	73.8	66.7	58.2	49.6	42.0	35.4	30.2	26.0	22.3		
10×10	90.25	88.4	85.9	83.0	79.0	73.6	67.0	60.0	52.9	46.4	40.4	35.5		
10×12	109.25	107	104	100	95.6	89.1	81.2	72.6	64.0	56.1	48.9	42.9		
10×14	128.25	126	122	118	112	105	95.3	85.3	75.1	65.9	57.5	50.4		
12×12	132.25	130	128	125	122	117	111	104	95.6	86.9	78.3	70.2		
14×14	182.25	180	178	176	172	168	163	156	148	139	129	119		
16×16	240.25	238	236	234	230	226	222	216	208	200	190	179		

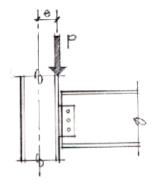
TABLE 6.1 Safe Loads for Wood Columns^a

^a Load capacity in kips for solid-sawn sections of No. 1 grade Douglas fir-larch with no adjustment for moisture or load duration conditions.

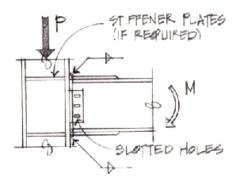
Timber Construction by Code

- light-frame
 - light loads
 - 2x's
 - floor joists 2x6, 2x8, 2x10, 2x12 typical at spacings of 12", 16", 24"

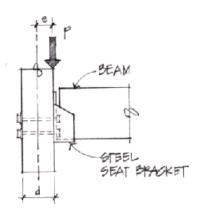
- normal spans of 20-25 ft or 6-7.5 m
- plywood spans between joists
- <u>stud</u> or load-bearing masonry walls
- limited to around 3 stories fire safety


Design of Columns with Bending

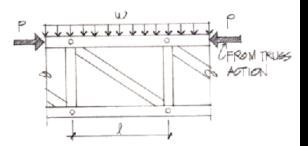
satisfy


 strength
 stability

 pick


 section

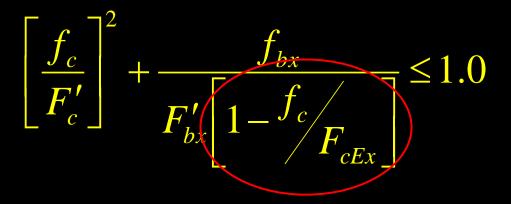
(a) Framed beam (shear) connection. $e = Eccentricity; M = P \times e$



(b) Moment connection (rigid frame). M = Moment due to beam bending

(c) Timber beam-column connection.

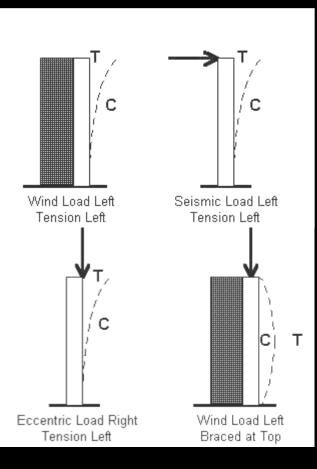
 $\mathbf{e} = \mathbf{d}/2 = \textit{eccentricity}; \, \mathbf{M} = \mathbf{P} \times \mathbf{e}$



(d) Upper chord of a truss—compression plus bending. $M = \frac{\omega \ell^2}{8}$

Elements of Architectural Structures ARCH 614

Design


• Wood

[] term – magnification factor for P- Δ F'_{bx} – allowable bending strength

Design Steps Knowing Loads

- 1. assume limiting stress
 - buckling, axial stress, combined stress
- 2. solve for r, A or S
- 3. pick trial section
- 4. analyze stresses
- 5. section ok?
- 6. stop when section is ok

