ELEMENTS OF ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 614

DR. ANNE NICHOLS
Spring 2014

twelve

design methods, structural codes

Design

- factors out of the designer's control
 - loads
 - occurrence
- factors within the designer's control
 - choice of material
 - "cost" of failure (F.S., probability, location)
 - economic design method
 - analysis method

Design Methods

- different approaches to meeting strength/safety requirements
 - allowable stress design (elastic)
 - ultimate strength design
 - limit state design
 - plastic design
 - load and resistance factor design
- assume a behavior at failure or other threshold and include a margin of safety

Load Types

- D = dead load
- L = live load
- $L_r = live roof load$
- *W* = wind load
- S = snow load
- E = earthquake load

- R = rainwater load or ice water load
- *T* = effect of material & temperature
- H = hydraulic loads from soil (F from fluids)

Weight of Materials

for a volume

$$-W=\gamma V$$

where γ is weight/volume

 $-W = \gamma t A$ for an extruded area with

height of t

•	
LOAD SOURCES	153

Weight of Building Construction

₽ ^C	psf^a	kPa ^a
Roofs		
3-ply ready roofing (roll, composition)	1	0.05
3-ply felt and gravel	5.5	0.26
5-ply felt and gravel	6.5	0.31
Shingles: Wood	2	0.10
Asphalt	2–3	0.10-0.15
Clay tile	9-12	0.43 - 0.58
Concrete tile	6–10	0.29 - 0.48
Slate, 3 in.	10	0.48

Building Codes

- documentation
 - laws that deal with planning, design, construction, and use of buildings
 - regulate building construction for
 - fire, structural and health safety
 - cover <u>all</u> aspect of building design
 - references standards
 - acceptable minimum criteria
 - material & <u>structural</u> codes

Building Codes

- occupancy
- construction types
- structural chapters
 - loads, tests, foundations

OCCUPANCY OR USE	UNIFORM (psf)	CONCENTRATED (lbs.)
1. Apartments (see residential)	-	_
Access floor systems Office use Computer use	50 100	2,000 2,000
Armories and drill rooms	150	
4. Assembly areas and theaters Fixed seats (fastened to floor) Lobbies Movable seats Stages and platforms Follow spot, projections and control rooms Catwalks	60 100 100 125 50	_

- structural materials, assemblies
 - roofs
 - concrete
 - masonry
 - steel

Prescribed Loads

- ASCE-7
 - live load (not roof) reductions allowed
- International Building Code
 - occupancy
 - wind: pressure to staticload
 - seismic: shear load function of mass and response to acceleration

fire resistance

Code Reduction of Live Loads

- for (ordinary) live loads
 - factored area supported ≥ 400 ft²
 - reduction can't exceed
 - 0.5L_o (one floor) or 0.4L_o (more)

$$L = L_o \left(0.25 + \frac{15}{\sqrt{K_{LL} A_T}} \right)$$

- for live loads > 100 lb/ft²
 - live load reduction of 20% on columns
- for (ordinary) roofs: $L_r = L_o R_1 R_2$ - 12 lb/ft² $\leq L_r \leq$ 20 lb/ft²

ELEMENT	
Interior columns	4
Exterior columns without cantilever slabs	4
Edge columns with cantilever slabs	3
Corner columns with cantilever slabs	2
Edge beams without cantilever slabs	2
Interior beams	2
All other members not identified above including: Edge beams with cantilever slabs	
Cantilever beams	
One-way slabs	1
Two-way slabs	
Members without provisions for continuous shear transfer normal to their span	

Structural Codes

- prescribe loads and combinations
- prescribe design method
- prescribe stress and deflection limits
- backed by the profession
- may require design to meet performance standards
- related to material or function

Structural Codes

- Design Codes
 - Wood
 - NDS
 - Steel
 - AISC
 - Concrete
 - ACI
 - AASHTO
 - Masonry
 - MSJC

Design Methods

- probability of loads and resistance
- material variability

- overload, fracture, fatigue, failure
- allowable stress design

$$f_{actual} = \frac{P}{A} \le f_{allowed} = \frac{f_{capacity}}{F.S.}$$

- limit state design
 - design loads & capacities

Allowable Stress Design

- historical method
- a.k.a.
 working stress,
 strength design
- stresses stay in ELASTIC range

Figure 5.20 Stress-strain diagram for various materials.

ASD Load Combinations

ASCE-7 (2010)

- D
- D + L
- $D + (L_r \text{ or } S \text{ or } R)$
- $D + 0.75L + 0.75(L_r \text{ or } S \text{ or } R)$
- D + (0.6W or 0.7E)
- $D + 0.75L + 0.75(0.6W \text{ or } 0.7E) + (0.75L_r \text{ or } S \text{ or } R)$
- 0.6D + (0.6W or 0.7E)

Limit State Design

- a.k.a. strength design
- stresses go to limit (strain outside elastic range)
- loads may be factored
- resistance or capacity reduced by a factor
- based on material behavior
- "state of the art"

Limit State Design

- load and resistance factor design (LRFD)
 - loads:
 - not constant,
 - possibly more influential on failure
 - happen more or less often
 - UNCERTAINTY

$$\gamma_D R_D + \gamma_L R_L \le \phi R_n$$

- $\overline{\phi}$ Resistance factor
- γ Load factor for (D)ead & (L)ive load

LRFD Load Combinations

ASCE-7 (2010)

•
$$1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$$

- $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W)$
- $1.2D + 1.0W + L + 0.5(L_r \text{ or } S \text{ or } R)$
- 1.2D + 1.0E + L + 0.2S
- 0.9D + 1.0W
- 0.9D + 1.0E
 - F has same factor as D in 1-5 and 7
 - H adds with 1.6 and resists with 0.9 (permanent)

Load Tracing

- how loads are transferred
 - usually starts at top
 - distributed by supports as <u>actions</u>
 - distributed by tributary areas

Load Tracing

Load Tracing

- tributary load
 - think of water flow
 - "concentrates" load of area into center

$$w = \left(\frac{load}{area}\right) \times \left(tributary\ width\right)$$

(a) FBD—decking.

(c) FBD—beams.

(b) FBD—joists.

(d) FBD—girder.

wall systems

Figure 4.12 Uniform wall load from a slab.

Figure 4.13 Uniform wall load from rafters and joists.

Figure 4.14 Concentrated loads from widely spaced beams.

openings & pilasters

Figure 4.15 Arching over wall openings.

Figure 4.16 Stud wall with a window opening.

Figure 4.17 Pilasters supporting concentrated beam loads.

foundations

deep foundations

