ELEMENTS OF ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 614 DR. ANNE NICHOLS **SPRING 2014**

lecture eleven

rigid frames compression

Rigid Frames 1 Lecture 11

Elements of Architectural Structures http://nisee.berkeley.edu/godden **ARCH 614**

<u>ol</u>ekiii

- <u>rigid</u> frames have no pins
- frame is all one body
- joints transfer <u>moments and shear</u>
- typically statically indeterminate
- types
 - portal
 - gable

Elements of Architectural Structures ARCH 614

behavior

- moments get redistributed
- deflections are smaller
- effective column lengths are shorter

- very sensitive to settling

- resists lateral loadings
- shape depends on stiffness of beams and columns
- 90° maintained

Figure 9.19: Model demonstration of the effects of varying the stiffness of beams and columns when a building frame is subjected to lateral loads.

Rigid Frames 5 Lecture 11 Elements of Architectural Structures ARCH 614

- staggered truss
 - rigidity
 - clear stories

www.arcchicago.blogspot.com

Rigid Frames 6 Lecture 11 Elements of Architectural Structures ARCH 614

- connections
 - steel
 - concrete

Fixed

http:// nisee.berkeley.edu/godden

Rigid Frames 7 Lecture 11 Elements of Architectural Structures ARCH 614

Braced Frames

- pin connections
- bracing to prevent lateral movements

Braced Frames

- types of bracing
 - knee-bracing
 - diagonal
 - -X
 - K or chevron
 - shear walls

diagonal

shear walls

Rigid Frames 9 Lecture 11 Elements of Architectural Structures ARCH 614

Shear Walls

resist lateral load in plane with wall

Compression Members

- designed for strength & stresses
- designed for serviceability & deflection
- need to design for <u>stability</u>
 - ability to support a specified load without sudden or unacceptable deformations

Elements of Architectural Structures ARCH 614

Column Buckling

- axially loaded columns
- long & slender
 - unstable equilibrium = buckling
 - sudden and not good

Modeling

- can be modeled with a spring at mid-height
- when moment from deflection exceeds the spring capacity ... "boing"
- critical load P

Effect of Length

• long & slender

short & stubby

Buckling Load

- related to deflected shape (P Δ)
- shape of sine wave
- Euler's Formula
- smallest I governs

$$P_{critical} = \frac{\pi^2 EI}{(L)^2}$$

Figure 9.3 Leonhard Euler (1707–1783).

S2014abn

Critical Stress

short columns

• slenderness ratio = L_e/r (L/d)

 $f_{critical}$

• radius of gyration = $r = \sqrt{-\frac{1}{2}}$

weak axis

D

critical

 $\pi^2 E$ $\pi^2 EAr^2$ *critical*

Rigid Frames 16 Lecture 11 Elements of Architectural Structures

actual

Critical Stresses

- when a column gets stubby, F_y will limit the load for steel
- real world has loads with eccentricity

Effective Length

- end conditions affect shape
- effective length factor, $K = L_{\rho} = K \cdot L$

Bracing

- bracing affects shape of buckle in one direction
- both should be checked!

Centric & Eccentric Loading

- centric
 - allowable stress from strength or buckling
- eccentric

– combined stresses

Elements of Architectural Structures ARCH 614 S2014abn

 $\mathbf{M} = Pe$

Stress Limit Conditions

- ASD interaction formula

$$\frac{f_a}{F_a} + \frac{f_b}{F_b} \le 1.0$$

- with biaxial bending

interaction diagram

Rigid Frame Analysis

- members see
 - shear
 - axial force
 - bending
- V & M diagrams

 plot on "outside"

Rigid Frame Analysis

- need support reactions
- free body diagram each member
- end reactions are <u>equal and opposite</u> on next member
- "turn" member like beam

- draw V & M

Rigid Frame Analysis

– FBD & M
opposite end reactions at joints

Rigid Frames 26 Lecture 11 Elements of Architectural Structures ARCH 614

Rigid Frame Design

- columns in frames

 ends can be "flexible"
 stiffness affected by beams
 - and column = El/L

 $G = \Psi$

- for the joint
 - I_c is the column length of each column

E

- I_b is the beam length of each beam
- measured center to center

Rigid Frame Design

• column effective length, k

Rigid Frames 28 Lecture 11

Tools – Multiframe

in computer lab 🤏 Plot 🕰 | 🕎 🖓 🏪 🎂 | 🛧 🍤 | 🖓 🖓 🖽 🔏 Frame ᠃╰∩用爲▦ळ∞│Ო⋔║老/ℾ 935.239 lbf-ft 📝 N 💽 🔄 🖭 🖭 🔒 🛒 Mz' Sections 📕 W44x198 1 1D 0.000 lbf-ft 17 - O 🗙 🔦 Load 45 4 4 4 4 4 5 5 1.0 View x=3.355 y=3.849 z=0.000 dx=-0.296 dy=0.099 dz=0.000 Sections 📕 W44x198 →X **Rigid Frames 29** Eleme 4abn View Load Case 1 Lecture 11 ARCH 614

Tools – Multiframe

- frame window
 - define frame members
 - or pre-defined frame
 - select points, assign supports
 - select members,
 assign <u>section</u>
 - load window

🤏 Frame

 select point or member, add point or distributed loads

Elements of Architectural Structures ARCH 614

Tools – Multiframe

- to run analysis choose
 Analyze menu
 Linear
- plot
 <u>- choose options</u>
- results
 - choose options

K Result 📃 🗖 🔀							
Static Case: Load Case 1							
	Memb	Label	Joint	Px' kip	Vy' kip	Vz' kip	
1	1	Column	1	1.250	-0.168	0.000	
2	1	Column	3	-1.250	0.168	0.000	
3	2	Column	2	1.250	0.168	0.000	
4	2	Column	4	-1.250	-0.168	0.000	
5	3	X Prima	3	0.168	1.250	0.000	
6	3	X Prima	4	-0.168	1.250	0.000 -	
··	Memb	er Actio	ns 🖌 M	lax Ad 🔳		Ŀ	
			ARC	H 61A			

Rigid Frames 31 Lecture 11