ELEMENTS OF **A**RCHITECTURAL **S**TRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 614 DR. ANNE NICHOLS SPRING 2014

lecture ten

other bea pinned frames Continental train platform, Grimshaw 1993

- statically indeterminate
- reduced moments than simple beam

- loading pattern affects
 - moments & deflection

unload end span

unload middle span

Moment Redistribution

- continuous slabs & beams with uniform loading
 - joints similar to fixed ends, but can rotate
- change in moment to center = wL^2
 - M_{max} for simply supported beam 8

Moment Distribution (a)

no load

http://nisee.berkeley.edu/godden

Moment Distribution (b)

add load

http://nisee.berkeley.edu/godden

Moment Distribution Method (c)

release joint 2

http://nisee.berkeley.edu/godden

Moment Distribution Method (d)

release joint 3

http://nisee.berkeley.edu/godden

Moment Distribution Method (e)

 exposure of final shape after cycles over initial shape

http://nisee.berkeley.edu/godden

Analysis Methods

- Approximate Methods
 - location of inflection points
- Force Method
 - forces are unknowns
- Displacement Method
 - displacements are unknowns

Theorem of Three Moments

- moments at three adjacent supports (2 spans)
- distributed load and same I:

$$M_1L_1 + 2M_2(L_1 + L_2) + M_3L_2 = -\frac{w_1L_1^3}{4} - \frac{w_2L_2^3}{4}$$

concentrated loads and same I:

$$M_{1}L_{1} + 2M_{2}(L_{1} + L_{2}) + M_{3}L_{2} = -\sum P_{1}L_{1}^{2}(n_{1} - n_{1}^{3}) - \sum P_{2}L_{2}^{2}(n_{2} - n_{2}^{3})$$

Two Span Beams & Charts

- equal spans & symmetrical loading
- middle support as flat slope

Pinned Frames

- structures with at least one 3 force body
- connected with pins
- reactions are <u>equal and opposite</u>

non-rigid

rigid

Rigid Frames

- <u>rigid</u> frames have no pins
- frame is all one body
- typically statically indeterminate
- types
 - portal
 - gable

Rigid Frames with PINS

- frame pieces with connecting pins
- not necessarily symmetrical

Internal Pin Connections

- statically determinant
 - 3 equations per body
 - 2 reactions per pin + support forces

Arches

- ancient
- traditional shape to span long distances

Elements of Architectural Structures ARCH 614

Arches

- primarily sees compression
- a brick "likes an arch"

Arches

- behavior
 - thrust relatedto height to width

Three-Hinged Arch

- statically determinant
 - 2 bodies, 6 equilibrium equations
 - 4 support, 2 pin reactions (= 6)

Beams with Internal Pins

- statically determinant when
 - 3 equilibrium equations per link =>
 - total of support & pin reactions (properly constrained)
- zero moment at pins

Procedure

- solve for all support forces you can
- draw a FBD of each member
 - pins are integral with member
 - pins with loads should belong to 3+ force bodies
 - pin forces are equal and opposite on connecting bodies
 - identify 2 force bodies vs. 3+ force bodies
 - use all equilibrium equations