ELEMENTS OF ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 614

DR. ANNE NICHOLS

SPRING 2013

moments

Moments 1 Lecture 5 Elements of Architectural Structures ARCH 614 S2009abn

Moments

 forces have the tendency to make a body rotate about an axis

- same translation but different rotation

Moments 6 Lecture 4 Elements of Architectural Structures ARCH 614 S2005abn

Moments

Figure 2.33 Moment on a cantilever beam.

Figure 2.34 An example of torsion on a cantilever beam

Moments 7

Elements of Architectural Structures ARCH 614 S2004abn

Moments

• a force acting at a different point causes a different moment:

Moments 8

Elements of Architectural Structures ARCH 614

Moments

- · defined by magnitude and direction
- units: N·m, k·ft
- direction:
 - + cw (!)
 - CCW
- value found from F and ⊥ distance

$$M = F \cdot d$$

d also called "lever" or "moment" arm

Moments 9

Elements of Architectural Structures ARCH 614 S2005abn

Moments

- · additive with sign convention
- can still move the force <u>along the line of action</u>
- location of moment independent

Moments

with same F:

Moments 10 Lecture 4 Elements of Architectural Structures ARCH 614 S2005abn

Moments

- · Varignon's Theorem
 - resolve a force into components at a point and finding perpendicular distances
 - calculate sum of moments
 - equivalent to original moment
- makes life easier!
 - geometry

Moments 12

- when component runs through point, d=0

Moments 11

Elements of Architectural Structures ARCH 614

S2004ahn

Elements of Architectural Structures ARCH 614

Moments of a Force

- moments of a force
 - introduced in Physics as "Torque Acting on a Particle"
 - and used to satisfy rotational equilibrium

Moments 9 Lecture 4 Elements of Architectural Structures ARCH 614 S2006abn

Moment Couples

- 2 forces
 - same size
 - opposite direction
 - distance d apart
 - cw or ccw

$$M = F \cdot d$$

not dependant on point of application

$$M = F \cdot d_1 - F \cdot d_2$$
Elements of Architectural Structures
ARCH 614

S2004abn

Physics and Moments of a Force

• my Physics book (right hand rule):

FIGURE 1.1–2. The plane shown is that defined by \mathbf{r} and \mathbf{f} in Fig. 11–1. (e) The magnitude of \mathbf{r} is given by P_L (Eq. 11–2b) or by P_L^2 (Eq. 11–2b). (b) Reversing \mathbf{f} reverses the direction of \mathbf{r} . (c) Reversing \mathbf{f} reverses the direction of \mathbf{r} . (d) Reversing \mathbf{f} and releaves the direction of \mathbf{r} unchanged. The direction of \mathbf{r} are represented by \bigcirc (perpendicularly out of the figure, the symbol representing the tip of an arrow) and by \bigotimes (perpendicularly into the figure, the symbol representing the tail of an arrow).

Moments 10 Lecture 4 Elements of Architectural Structures ARCH 614 S2006abn

Moment Couples

- equivalent couples
 - same magnitude and direction
 - F & d may be different

Moments 14

Elements of Architectural Structures ARCH 614

Moment Couples

- added just like moments caused by one force
- can <u>replace</u> two couples with a single couple

$$300 \text{ N}$$
 100 mm
 300 N
 200 N
 240 N
 250 mm

Moments 15

Elements of Architectural Structures
ARCH 614

S2004abn

Equivalent Force Systems

- two forces at a point is equivalent to the resultant at a point
- resultant is equivalent to two components at a point
- resultant of equal & opposite forces at a point is zero
- put equal & opposite forces at a point (sum to 0)
- · transmission of a force along action line

Moment Couples

moment couples in structures

Force-Moment Systems

 single force causing a moment can be replaced by the same force at a different point by providing the moment that force caused

moments are shown as arched arrows

nrrows

Moments 16 Lecture 4 Elements of Architectural Structures ARCH 614 S2005abn

Moments 16

Elements of Architectural Structures ARCH 614

Force-Moment Systems

 a force-moment pair can be replaced by a force at another point causing the original moment

Moments 17

Elements of Architectural Structures ARCH 614 S2004abn

Parallel Force Systems

- forces are in the same direction
- · can find resultant force
- need to find <u>location</u> for equivalent moments

Moments 18

Elements of Architectural Structures ARCH 614 S2004abn

Equilibrium

- rigid body
 - doesn't deform
 - coplanar force systems

$$R_{x} = \sum F_{x} = 0_{(\Sigma H)}$$

$$R_{y} = \sum F_{y} = 0_{(\Sigma V)}$$

$$M = \sum M = 0$$

Free Body Diagram

- FBD (sketch)
- tool to see all forces on a body or a point including
 - external forces
 - weights
 - force reactions
 - external moments
 - moment reactions
 - internal forces

Equilibrium 3 Lecture 5 Elements of Architectural Structures ARCH 614 S2006abr

Equilibrium 10

Elements of Architectural Structures ARCH 614

Free Body Diagram

- determine body
- FREE it from:
 - ground
 - supports & connections
- draw all external forces acting ON the body
 - reactions
 - applied forces
 - gravity

Equilibrium 11

Elements of Architectural Structures ARCH 614 S2004abn

Free Body Diagram

- solve equations
 - most times 1 unknown easily solved
 - plug into other equation(s)
- common to have unknowns of
 - force magnitudes
 - force angles
 - moment magnitudes

Free Body Diagram

- sketch FBD with relevant geometry
- · resolve each force into components
 - known & unknown angles name them
 - known & unknown forces name them
 - known & unknown moments name them
- are any forces related to other forces?
- for the unknowns
- write only as many equilibrium equations as needed
- solve up to 3 equations

Equilibrium 12

Elements of Architectural Structures ARCH 614 S2004abr

Reactions on Rigid Bodies

- · result of applying force
- unknown size
- · connection or support type
 - known direction
 - related to motion prevented

no translation

Fauilibrium 19

Elements of Architectural Structures ARCH 614

Supports and Connections

Moment Equations

- sum moments at intersection where the most forces intersect
- multiple moment equations may not be useful
- combos:

$$\sum F_{x} = 0 \qquad \sum F = 0 \qquad \sum M_{1} = 0$$

$$\sum F_{y} = 0 \qquad \sum M_{1} = 0 \qquad \sum M_{2} = 0$$

$$\sum M_{1} = 0 \qquad \sum M_{2} = 0 \qquad \sum M_{3} = 0$$

Supports and Connections

Concentrated Loads

Equilibrium 21 Lecture 5 Elements of Architectural Structures ARCH 614 S2005abn

Distributed Loads

Equivalent Force Systems

- replace forces by resultant
- place resultant where M = 0
- · using calculus and area centroids

$$W = \int_0^L w dx = \int dA_{loading} = A_{loading}$$

Loads 17 Elements of Architectural Structures \$2006abn Lecture 9 ARCH 614

Beam Supports

statically determinate

• statically indeterminate

Internal Beam Forces 20 Lecture 12 Elements of Architectural Structures ARCH 614 S2004abn

Load Areas

- area is width x "height" of load
- <u>w</u> is load per unit length
- W is total load

Loads 19 Lecture 9 Elements of Architectural Structures ARCH 614 S2006abn