ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN ARCH 614 DR. ANNE NICHOLS SPRING 2013 ## moments Moments 1 Lecture 5 Elements of Architectural Structures ARCH 614 S2009abn #### **Moments** forces have the tendency to make a body rotate about an axis - same translation but different rotation Moments 6 Lecture 4 Elements of Architectural Structures ARCH 614 S2005abn #### **Moments** Figure 2.33 Moment on a cantilever beam. Figure 2.34 An example of torsion on a cantilever beam Moments 7 Elements of Architectural Structures ARCH 614 S2004abn #### **Moments** • a force acting at a different point causes a different moment: Moments 8 Elements of Architectural Structures ARCH 614 #### **Moments** - · defined by magnitude and direction - units: N·m, k·ft - direction: - + cw (!) - CCW - value found from F and ⊥ distance $$M = F \cdot d$$ d also called "lever" or "moment" arm Moments 9 Elements of Architectural Structures ARCH 614 S2005abn #### **Moments** - · additive with sign convention - can still move the force <u>along the line of action</u> - location of moment independent #### **Moments** with same F: Moments 10 Lecture 4 Elements of Architectural Structures ARCH 614 S2005abn #### **Moments** - · Varignon's Theorem - resolve a force into components at a point and finding perpendicular distances - calculate sum of moments - equivalent to original moment - makes life easier! - geometry Moments 12 - when component runs through point, d=0 Moments 11 Elements of Architectural Structures ARCH 614 S2004ahn Elements of Architectural Structures ARCH 614 #### Moments of a Force - moments of a force - introduced in Physics as "Torque Acting on a Particle" - and used to satisfy rotational equilibrium Moments 9 Lecture 4 Elements of Architectural Structures ARCH 614 S2006abn ## Moment Couples - 2 forces - same size - opposite direction - distance d apart - cw or ccw $$M = F \cdot d$$ not dependant on point of application $$M = F \cdot d_1 - F \cdot d_2$$ Elements of Architectural Structures ARCH 614 S2004abn ## Physics and Moments of a Force • my Physics book (right hand rule): FIGURE 1.1–2. The plane shown is that defined by \mathbf{r} and \mathbf{f} in Fig. 11–1. (e) The magnitude of \mathbf{r} is given by P_L (Eq. 11–2b) or by P_L^2 (Eq. 11–2b). (b) Reversing \mathbf{f} reverses the direction of \mathbf{r} . (c) Reversing \mathbf{f} reverses the direction of \mathbf{r} . (d) Reversing \mathbf{f} and releaves the direction of \mathbf{r} unchanged. The direction of \mathbf{r} are represented by \bigcirc (perpendicularly out of the figure, the symbol representing the tip of an arrow) and by \bigotimes (perpendicularly into the figure, the symbol representing the tail of an arrow). Moments 10 Lecture 4 Elements of Architectural Structures ARCH 614 S2006abn # Moment Couples - equivalent couples - same magnitude and direction - F & d may be different Moments 14 Elements of Architectural Structures ARCH 614 ## Moment Couples - added just like moments caused by one force - can <u>replace</u> two couples with a single couple $$300 \text{ N}$$ 100 mm 300 N 200 N 240 N 250 mm Moments 15 Elements of Architectural Structures ARCH 614 S2004abn ## Equivalent Force Systems - two forces at a point is equivalent to the resultant at a point - resultant is equivalent to two components at a point - resultant of equal & opposite forces at a point is zero - put equal & opposite forces at a point (sum to 0) - · transmission of a force along action line #### Moment Couples moment couples in structures # Force-Moment Systems single force causing a moment can be replaced by the same force at a different point by providing the moment that force caused moments are shown as arched arrows nrrows Moments 16 Lecture 4 Elements of Architectural Structures ARCH 614 S2005abn Moments 16 Elements of Architectural Structures ARCH 614 ## Force-Moment Systems a force-moment pair can be replaced by a force at another point causing the original moment Moments 17 Elements of Architectural Structures ARCH 614 S2004abn ## Parallel Force Systems - forces are in the same direction - · can find resultant force - need to find <u>location</u> for equivalent moments Moments 18 Elements of Architectural Structures ARCH 614 S2004abn # Equilibrium - rigid body - doesn't deform - coplanar force systems $$R_{x} = \sum F_{x} = 0_{(\Sigma H)}$$ $$R_{y} = \sum F_{y} = 0_{(\Sigma V)}$$ $$M = \sum M = 0$$ Free Body Diagram - FBD (sketch) - tool to see all forces on a body or a point including - external forces - weights - force reactions - external moments - moment reactions - internal forces Equilibrium 3 Lecture 5 Elements of Architectural Structures ARCH 614 S2006abr Equilibrium 10 Elements of Architectural Structures ARCH 614 # Free Body Diagram - determine body - FREE it from: - ground - supports & connections - draw all external forces acting ON the body - reactions - applied forces - gravity Equilibrium 11 Elements of Architectural Structures ARCH 614 S2004abn ## Free Body Diagram - solve equations - most times 1 unknown easily solved - plug into other equation(s) - common to have unknowns of - force magnitudes - force angles - moment magnitudes # Free Body Diagram - sketch FBD with relevant geometry - · resolve each force into components - known & unknown angles name them - known & unknown forces name them - known & unknown moments name them - are any forces related to other forces? - for the unknowns - write only as many equilibrium equations as needed - solve up to 3 equations Equilibrium 12 Elements of Architectural Structures ARCH 614 S2004abr # Reactions on Rigid Bodies - · result of applying force - unknown size - · connection or support type - known direction - related to motion prevented no translation Fauilibrium 19 Elements of Architectural Structures ARCH 614 ## Supports and Connections # Moment Equations - sum moments at intersection where the most forces intersect - multiple moment equations may not be useful - combos: $$\sum F_{x} = 0 \qquad \sum F = 0 \qquad \sum M_{1} = 0$$ $$\sum F_{y} = 0 \qquad \sum M_{1} = 0 \qquad \sum M_{2} = 0$$ $$\sum M_{1} = 0 \qquad \sum M_{2} = 0 \qquad \sum M_{3} = 0$$ ## Supports and Connections #### Concentrated Loads Equilibrium 21 Lecture 5 Elements of Architectural Structures ARCH 614 S2005abn #### Distributed Loads # Equivalent Force Systems - replace forces by resultant - place resultant where M = 0 - · using calculus and area centroids $$W = \int_0^L w dx = \int dA_{loading} = A_{loading}$$ Loads 17 Elements of Architectural Structures \$2006abn Lecture 9 ARCH 614 ## Beam Supports statically determinate • statically indeterminate Internal Beam Forces 20 Lecture 12 Elements of Architectural Structures ARCH 614 S2004abn #### Load Areas - area is width x "height" of load - <u>w</u> is load per unit length - W is total load Loads 19 Lecture 9 Elements of Architectural Structures ARCH 614 S2006abn