ELEMENTS OF ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 614 DR. ANNE NICHOLS SPRING 2013

equilibrium

Equilibrium 1 Lecture 3 Elements of Architectural Structures ARCH 614 S2009abn

Equilibrium on a Point

• analytically

• Newton convinces us it will stay at rest

Equilibrium

- balanced
- steady
- resultant of forces on a particle is 0

Equilibrium on a Point

• collinear force system

- ex: cables $\sum F_{in-line} = 0$

 $[R_x = \sum F_x = 0 \qquad R_y = \sum F_y = 0]$

Equilibrium 6

Elements of Architectural Structures ARCH 614

Equilibrium 7

Equilibrium on a Point

concurrent force system

Equilibrium 8

Elements of Architectural Structures ARCH 614

Free Body Diagram

- determine point
- FREE it from:
 - ground
 - supports & connections
- draw all external forces acting ON the body
 - reactions
 - (supporting forces)
 - applied forces
 - gravity

Sign suspended from a strut and cable TENSION I SIGN WRIGH = m·g FBD of concurrent point B

BUILDING GUY CABLE

PHIZONTAL

Fauilibrium 11

Elements of Architectural Structures ARCH 614

S2004abr

S2004abr

Free Body Diagram

- FBD (sketch)
- tool to see all forces on a body or a point including
 - external forces
 - weights

Equilibrium 10

Fauilibrium 12

- force reactions
- internal forces

ARCH 614			

Free Body Diagram

- sketch FBD with relevant geometry
- resolve each force into components
 - known & unknown angles name them

Elements of Architectural Structures

- known & unknown forces name them
- are any forces related to other forces?
- for the unknowns
- write only as many equilibrium equations as needed
- solve up to 2 equations

S2004abn

Free Body Diagram

- solve equations
 - most times 1 unknown easily solved

Elements of Architectur

ARCH 614

- plug into other equation(s)
- · common to have unknowns of
 - force magnitudes
 - force angles

Force Reactions

- result of applying force
- unknown size
- · connection or support type
 - known direction
 - related to motion prevented

			no vertical motion	no translation	
al Structures	S2006abn	Equilibrium 19	Elements of Architectural Structures ARCH 614		S2004abn

Friction

Equilibrium 10

Lecture 5

- resistance to movement
- contact surfaces determine μ
- proportion of normal force (⊥)
 - opposite to slide direction
 - static > kinetic

Cable Reactions

- equilibrium:
 - more reactions (4) than equations
 - but, we have slope relationships
 - X component the same everywhere

Equilibrium 11 Lecture 3 Elements of Architectural Structures ARCH 614

S2009abn

(c)

Motion

Equilibrium 28

Elements of Architectural Structures ARCH 614

Cable-Stayed Structures

- diagonal cables support horizontal spans
- typically symmetrical
- Patcenter, Rogers 1986

Elements of Architectural Structures ARCH 614 www.columbia.edu S2005abn

Patcenter, Rogers 1986

• dashes – cables pulling

Figure 3.5: Patcenter, load path diagram.

Equilibrium 37 Lecture 5 Elements of Architectural Structures ARCH 614 S2005abn

Patcenter, Rogers 1986

- column free space
- roof suspended
- solid steel ties
- steel frame supports masts

Equilibrium 36 Lecture 5 Elements of Architectural Structures ARCH 614 S2005abn

Truss Structures

- ancient (?) wood
 Romans 500 B.C.
- Renaissance revival
- 1800's analysis
- efficient

Trusses Intro10

Elements of Architectural Structures ARCH 614

Equilibrium 35 Lecture 5

Truss Structures

- analogous to cables and struts

Truss Structures

- comprised of straight members
- geometry with triangles is stable
- · loads applied only at pin joints

Truss Structures

- 2 force members
 - forces in line, equal and opposite
 - compression
 - tension

- 3 members connected by 3 joints
- 2 more members need 1 more joint b = 2n - 3

Trusses Intro13

Elements of Architectural Structures ARCH 614

S2004abn

Original size

Truss Structures

compression and tension

Trusses Intro14

Elements of Architectural Structures ARCH 614

Truss Structures

- statically determinate
- indeterminate
- unstable

b = 21 (a) Determinate.

n = 10 b = 16 < 2(10) - 3 = 17(Too few members—square panel is unstable)

n = 10 b = 18 > 2(10) - 3 = 17(Too many members)

n = 12 2(n) - 3 = 2(12) - 3 = 21

Trusses Intro15

(w)

b = 16

(c) Unstable.

Elements of Architectural Structures ARCH 614

(b) Indeterminate.

S2004abn

Trusses

• common designs

Trusses

• common designs

Trusses Intro17

Elements of Architectural Structures ARCH 614

S2004abn

Trusses

• uses

Trusses Intro18

- roofs & canopies
- long spans
- lateral bracing

Truss Connections

Sainsbury Center, Foster 1978

ARCH 614

Elements of Architectural Structures S2004abn

Sainsbury Center, Foster 1978

Trusses Intro20

Elements of Architectural Structures ARCH 614

S2004abn

Truss Analysis

• visualize compression and tension from deformed shape

Trusses Intro 22 Lecture 6

Elements of Architectural Structures ARCH 614

S2005abn

Truss Analysis

- internal equilibrium

Trusses Intro22

Elements of Architectural Structures ARCH 614

S2004abn

Method of Joints

- isolate each joint
- enforce equilibrium in F_x and F_y
- · can find all forces
- long

Trusses Intro23

· easy to mess up

Joint Cases

two bodies connected

Trusses Intro 25 Lecture 6

Elements of Architectural Structures ARCH 614

S2005abn

Joint Cases

three bodies with two in line

Elements of Architectural Structures

ARCH 614

Trusses Intro 26

Lecture 6

Elements of Architectural Structures ARCH 614

S2005abn

Joint Cases

• crossed

Tools – Multiframe

Tools – Multiframe

• in computer lab

Tools – Multiframe

· to run analysis choose Case Analyse Time Window Hel Linea – Analysis menu Buckling. Modal.. Linear Time history Batch Analysis. • plot Calculate 1 5 5 5 - choose options 0.005 0.0049 results - choose Static Case: Load Case Px' mb Label Joint options -0.007 0.001 0.00 -0.001 0.004 -0.004 Max Actions Fauilibrium 35 ments of Architectural Structures \$2008abn ARCH 614 Lecture 3