ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN ARCH 614 DR. ANNE NICHOLS SPRING 2013 lecture NINETEEN # steel construction: bolts & tension members Lecture 19 Elements of Architectural Structures ARCH 614 S2009abn # Bolts ### **Connections** - needed to: - support beams by columns - connect truss members - splice beams or columns - transfer load - subjected to - tension or compression - shear - bending (a) Framed beam (shear) connection. e = Eccentricity: M = P × e (b) Moment connection (rigid frame). M = Moment due to beam bending Steel Bolts 2 Lecture 19 Elements of Architectural Structures ARCH 614 S2007abn ### **Bolts** - types - materials - · high strength - · A307, A325, A492 - location of threads - included - excluded - friction or bearing - · always tightened Steel Bolts 4 Lecture 19 Elements of Architectural Structures ARCH 614 # **Bolted Connection Design** - bearing stress - yielding - shear stress - single & double Elements of Architectural Structures ARCH 614 ## **Bolts** | Nominal Bott Diameter, d, in. | | | | | | 5/8 | | 3/4 | | 7/0 | | 1 | | |-------------------------------------|-----------------|-----------------------------|----------------------------|--------------|--------------|-----------------|--------------|-----------------|--------------|-----------------|--------------|--------------|--| | Nominal Bolt Area, in. ² | | | | | 0.307 | | 0.442 | | 0.601 | | 0.785 | | | | ASTM
Desig. | Thread
Cond. | F _{rt} /Ω
(ksi) | φF _{ttr}
(ksi) | Load-
ing | r_0/Ω | ¢r _n | r_0/Ω | φr _a | t_b/Ω | 0% | r_0/Ω | 04 | | | | | | | | ASD | LRFD | ASD | LRFD | ASD | LRFD | ASD | LRF | | | Group | N | 27.0 | 40.5 | S
D | 8.29
16.6 | 12.4
24.9 | 11.9
23.9 | 17.9
35.8 | 16.2
32.5 | 24.3
48.7 | 21.2
42.4 | 31.J
63.J | | | A | х | 34.0 | 51.0 | S
D | 10.4 | 15.7
31.3 | 15.0
30.1 | 22.5
45.1 | 20.4
40.9 | 30.7
61.3 | 26.7
53.4 | 40.0
80.1 | | | Group
B | N | 34.0 | 51.0 | S | 10.4 | 15.7
31.3 | 15.0 | 22.5
45.1 | 20.4
40.9 | 30.7
61.3 | 26.7
53.4 | 40.0
80.1 | | | | x | 42.0 | 63.0 | S
D | 12.9
25.8 | 19.3
38.7 | 18.6
37.1 | 27.8
55.7 | 25.2
50.5 | 37.9
75.7 | 33.0
65.9 | 49.5
98.5 | | | A307 | - | 13.5 | 20.3 | S
D | 4,14
8.29 | 6.23
12.5 | 5.97
11.9 | 8.97
17.9 | 8.11
16.2 | 12.2
24.4 | 10.6 | 15.5 | | | No | ominal Bott | Diamet | or, <i>d</i> , in. | | 1 | //8 | 1 | 1/4 | 1 | 3/6 | 1 | 1/2 | | | Nominal Bolt Area, in. ² | | | | | 0.994 | | 1.23 | | 1.48 | | 1.77 | | | | ASTM
Desig. | Thread
Cond. | F _{re} /Ω
(ksi) | oF _{nr}
(ksi) | Load- | r_0/Ω | φfa | r_n/Ω | φr _n | r_b/Ω | or _a | r_0/Ω | 0% | | | | | ASD | LRFD | ing | ASD | LRFD | ASD | LRFD | ASD | LRFD | ASD | LRFE | | | Group
A | N | 27.0 | 40.5 | S | 26.8
53.7 | 40.3
80.5 | 33.2
66.4 | 49.8
99.6 | 40.0
79.9 | 59.9
120 | 47.8
95.6 | 71.7
143 | | | | x | 34.0 | 51.0 | S | 33.8
67.6 | 50.7
101 | 41.8
83.6 | 62.7
125 | 50.3
101 | 75.5
151 | 60.2
120 | 90.3
181 | | | Group
B | N | 34.0 | 51.0 | S | 33.8
67.6 | 50.7
101 | 41.8
83.6 | 62.7
125 | 50.3
101 | 75.5
151 | 60.2
120 | 90.3
181 | | | | х | 42.0 | 63.0 | S
D | 41.7
83.5 | 62.6
125 | 51.7
103 | 77.5
155 | 62.2
124 | 93.2
186 | 74.3
149 | 112
223 | | | A307 | - | 13.5 | 20.3 | S
D | 13.4
26.8 | 20.2
40.4 | 16.6
33.2 | 25.0
49.9 | 20.0
40.0 | 30.0
60.1 | 23.9
47.8 | 35.9
71.9 | | | ASD | LRFD | | loaded or | | | | | | | | | | | | | | | | labl | | nsil
Its, | _ | i | | | |-------------------------------------|--------------------------------|---------------------------|------------------------|----------------------|---|----------------------|----------------------|-------------------------|----------------------|----------------------| | Nominal E | Bolt Diameter | d, in. | | 1/a | | 3/4 | | 7/8 | | 1 | | Nominal Bolt Area, in.2 | | | 0.307 | | 0.442 | | 0.601 | | 0.785 | | | ASTM Desi | F_{ot}/Ω (ksi) | ¢F _{nf}
(ksi) | r_0/Ω | ¢r _a | r_0/Ω | ¢r _n | r_0/Ω | φ r _n | r_0/Ω | ¢€e | | | ASD | LRFD | ASD | LRFD | ASD | LRFD | ASD | LRFD | ASD | LRF | | Group A
Group B
A307 | 45.0
56.5
22.5 | 67.5
84.8
33.8 | 13.8
17.3
6.90 | 20.7
26.0
10.4 | 19.9
25.0
9.94 | 29.8
37.4
14.9 | 27.1
34.0
13.5 | 40.6
51.0
20.3 | 35.3
44.4
17.7 | 53.0
66.6
26.5 | | Nominal B | Bolt Diameter, | d, in. | 1 | 1/4 | 1 | 11/4 | 1 | 3/8 | 1 | 1/2 | | Nominal Bolt Area, in. ² | | | 0.994 | | 1.23 | | 1.48 | | 1.77 | | | ASTM Desi | F _{it} /Ω
g. (ksi) | oF _{nf}
(ksi) | r_0/Ω | or _e | r_n/Ω | or _a | r_a/Ω | φ r _N | r_n/Ω | 0fa | | | ASD | LRFD | ASD | LRFD | ASD | LRFD | ASD | LRFD | ASD | LRFC | | Group A
Group B
A307 | 45.0
56.5
22.5 | 67.5
84.8
33.8 | 44.7
56.2
22.4 | 67.1
84.2
33.5 | 55.2
69.3
27.6 | 82.8
104
41.4 | 66.8
83.9
33.4 | 100
126
50.1 | 79.5
99.8
39.8 | 119
150
59.6 | | ASD | LRFD | | Manufacture and Common | | A. C. | | - | | | - | | $\Omega = 2.00$ | 0 = 0.75 | f | | | | | | | | | Lecture 19 Elements of Architectural Structures ARCH 614 S2012abn #### **Bolts** - rarely fail in bearing - holes considered 1/8" larger • shear & tension $\phi_{v} = 0.75$ - single shear or tension $R_n = F_n A_b$ double shear $R_n = F_n 2A_b$ Steel Bolts 6 Lecture 19 Elements of Architectural Structures ARCH 614 S2012abn #### **Bolts** - bearing - deformation is concern $$R_n = 1.2L_c t F_u \le 2.4 dt F_u$$ - deformation isn't concern $$R_n = 1.5 L_c t F_u \le 3.0 dt F_u$$ - long slotted holes $$R_n = 1.0L_c t F_u \le 2.0 dt F_u$$ L_c – clear length to edge or next hole (ex. 1½", 3") Steel Bolts 9 Lecture 19 Flements of Architectural Structures ARCH 614 ## **Bolts** | | | | | ps/in. | | Dist
ness | | | | | | | |-----------------------------------|----------------------|--------------------|-------------------------------|-------------------------|----------------|-----------------|--------------|-----------------|---|--------------|--|--| | Hole Type | Edge
Distance | F _o ksi | Nominal Bolt Diameter, d, in. | | | | | | | | | | | | | | | 5/8 | | 3/4 | | 7/8 | | 1 | | | | | L _e , in. | | r_0/Ω | φ r _n | r_{p}/Ω | or _n | r_n/Ω | ¢r _a | r_a/Ω | 0re | | | | | 54 | 110 | ASD | LRFD | ASD | LRFD | ASD | LRFD | - | LRFD | | | | | 11/4 | 58
65 | 31.5
35.3 | 47.3
53.0 | 29.4
32.9 | 44.0
49.4 | 27.2
30.5 | 40.8
45.7 | | 37.5 | | | | SSLT | | 58 | 43.5 | 65.3 | 52.2 | 78.3 | 53.3 | 79.9 | | 76.7 | | | | trous. | 2 | 65 | 48.8 | 73.1 | 58.5 | 87.8 | 59.7 | 89.6 | | 85.9 | | | | | 11/4 | 58 | 28.3 | 42.4 | 26.1 | 39.2 | 23.9 | 35.9 | 20.7 | 31.0 | | | | SSLP | 1.74 | 65 | 31.7 | 47.5 | 29.3 | 43.9 | 26.8 | 40.2 | 23.2 | 34.7 | | | | | 2 | 58
65 | 43.5
48.8 | 65.3
73.1 | 52.2
58.5 | 78.3
87.8 | 50.0
56.1 | 75.0
84.1 | | 70.1 | | | | ovs | 0.00 | 58 | 29.4 | 44.0 | 27.2 | 40.8 | 25.0 | 37.5 | | 78.6 | | | | | 11/4 | 65 | 32.9 | 49.4 | 30.5 | 45.7 | 28.0 | 42.0 | 24.4 | 36.6 | | | | | 2 | 58 | 43.5 | 65.3 | 52.2 | 78.3 | 51.1 | 76.7 | 47.9 | 71.8 | | | | | - 2 | 65 | 48.8 | 73.1 | 58.5 | 87.8 | 57.3 | 85.9 | 53.6 | 80.4 | | | | | 11/4 | 58
65 | 16.3 | 24.5 | 10.9 | 16.3 | 5.44 | 8.16
9.14 | | 1.28 | | | | LSLP | | 58 | 42.4 | 63.6 | 37.0 | 55.5 | 31.5 | 47.3 | 20.1 | 39.2 | | | | | 2 | 65 | 47.5 | 71.3 | 41.4 | 62.2 | 35.3 | 53.0 | 29.3 | 43.9 | | | | | 411 | 58 | 26.3 | 39.4 | 24.5 | 36.7 | 22.7 | 34.0 | 20.8 | 31.3 | | | | LSLT | 11/4 | 65 | 29.5 | 44.2 | 27.4 | 41.1 | 25.4 | 38.1 | F ₀ /Ω ASD 25.0 28.0 51.1 57.3 57.3 20.7 23.2 46.8 52.4 21.8 24.4 47.9 53.6 — 26.1 29.3 20.8 23.4 42.6 47.7 69.6 | 35.0 | | | | | 2 | 58
65 | 36.3
40.6 | 54.4 | 43.5
48.8 | 65.3
73.1 | 44.4 | 66.6
74.6 | | 63.9
71.6 | | | | STD, SSLT, | | | - | | The state of | - | - Core | | - | 100 | | | | SSLP, OVS, | Le > Lena | 58
65 | 43.5
48.8 | 65.3
73.1 | 52.2
58.5 | 78.3
87.8 | 60.9
68.3 | 91.4 | | 104 | | | | LSLP | 1 | 150 | TOSSESSES. | 1000 | 102522-111 | | 1300 | 7777 | 10000 | 100 | | | | LSLT | Le 2 Le tutt | 58
65 | 36.3
40.6 | 54.4 | 43.5
48.8 | 65.3
73.1 | 50.8 | 76.1
85.3 | | 87.0
97.5 | | | | | | STD. | 40.0 | 00.5 | 40.0 | 70.1 | 50.0 | 00.0 | 00.0 | - | | | | Edge distance
for full bearing | | SSLT, | 15/8 | | - 1 | 15/16 | 21/4 | | 21 | 716 | | | | | | LSLT | 100 | | | 280 | 100 | 9 11 | | | | | | strer | | OVS | | 1/16 | 2 | | 25 | | | | | | | L _e ≥ L _e | hot", In. | SSLP | | 1/16 | 2 | | 25 | | | | | | | | | LSLP | 21/16 | | 27/16 | | 27/8 | | 31/4 | | | | | | | Ta
ip-C
vailab | ritica | al Co | | ctio | | Grou | • | | | | |---|--|---|-------------------------|-------------------|-------------------------|--------------------------|--------|--|-----------------|--|--|--| | | | ass A | | | - | | | | | | | | | | | | Gr | oup B Bo | its | | | 201 | | | | | | | | - | 00 0 | Non | ninal Bolt | Diameter, | d, in. | -1371 | | | | | | 117 118 | | | /e | 1 | 94 | 1 | /a | 1 | | | | | | 100 | | Minimum Group B Bolt Pretension, kips | | | | | | | | | | | | Hole Type | Loading | 2 | 4 | | 15 | 49 | | 64 | | | | | | | | r_0/Ω | QFa | t_0/Ω | QFa | I_0/Ω | 05 | t_0/Ω | QF ₀ | | | | | | | ASD | LRFD | ASO | LRFD | ASD | LRFD | ASD | LRF | | | | | STD/SSLT | s | 5.42 | 8.14 | 7.91 | 11.9 | 11.1 | 16.6 | 14.5 | 21.7 | | | | | | D
S | 10.8 | 16.3 | 15.8 | 23.7 | 9.44 | 33.2 | | | | | | | OVS/SSLP | D | 9,25 | 13.8 | 13.5 | 20.2 | 18.9 | 28.2 | 24.7 | 36.9 | | | | | LSL | S | 3.80 | 5.70 | 5.54 | 8.31 | 7.76 | 11.6 | 10.1 | 15.2 | | | | | | D | 7.60 | 11.4 | 11.1
Non | 16.6 | 15.5
Diameter. | 23.3 | 20.3 | 30.4 | | | | | | Loading | 1 | 1/a | | 1 | | | | | | | | | | | 11/8 11/4 12/8 11/2 Minimum Group B Bolt Pretension, kips | | | | | | | | | | | | Hole Type | | | 10 | | 02 | - | 21 | _ | | | | | | | | | | | - | - | | | | | | | | | | r _s /Ω | ¢r _a
LRFD | r _a /Ω | ¢r _e
LBFD | r _n /Ω
ASD | LRFD | 64 6/Ω 046 6/4Ω 046 6/10 046 645 1445 217.7 289 43.4 247 36.6 103 15.2 203 30.4 11½ 6 148 64Ω 046 64Ω 046 659 100 233.4 50.1 669 100 255.5 42.2 25.5 42.2 25.5 42.2 25.5 42.2 23.4 35.5 17.8 | | | | | | | s | 18.1 | 27.1 | 23.1 | 34.6 | 27.3 | 41.0 | | - | | | | | STD/SSLT | D | 36.2 | 54.2 | 46.1 | 69.2 | 54.7 | 82.0 | | | | | | | OVS/SSLP | s | 15.4 | 23.1 | 19.6 | 29.4 | 23.3 | 34.9 | | 42.6 | | | | | | D
S | 30.8 | 46.1 | 39.3 | 58.8 | 46.6 | 69.7 | | | | | | | LSL | D | 25.3 | 38.0 | 32.3 | 48.4 | 38.3 | 57.4 | | 70.2 | | | | | STD = standari
SVS = oversize
SSLT = short-si
SSLP = short-si
SL = long-sio | d hole
otted hole tran
otted hole para | allel to the I | ine of force | | rce | S = single
D = doubl | | | | | | | | Hole Type | ASD | LRFD | | | | | | iller has bee | n provide | | | | | | Ω = 1.50 | LRFD Note: Sig-ortifical both values assume no more than one filter has been provided | | | | | | | | | | | #### Effective Net Area - likely path to "rip" across - bolts divide transferred force too - shear lag $A_e \leq A_n U$ Steel Bolts 11 Elements of Architectural Structures Lecture 19 Tension Members - steel members can have <u>holes</u> - reduced area $$A_n = A_g - A_{of \ all \ holes} + t\Sigma \frac{s^2}{4g}$$ increased stress ### **Tension Members** limit states for failure $$P_a \leq P_n / \Omega \quad P_u \leq \phi_t P_n$$ - 1. yielding $\phi_t = 0.9$ $P_n = F_v A_\varrho$ - 2. rupture* $\phi_t = 0.75$ $P_n = F_u A_e$ A_a - gross area A_e - effective net area (holes 3/16" + d) F_{ij} = the tensile strength of the steel (ultimate) Steel Bolts 13 S2007abn #### Framed Beam Connections # Framed Beam Conne - tables for standard bolt sizes & spacings - # bolts - bolt diameter, angle leg thickness - bearing on beam web ## Table 10-1 (continued) (con #### Framed Beam Connections - terms - coping #### Beam Connections - LRFD provisions - shear yielding - shear rupture - block shear rupture - tension yielding - tension rupture - local web buckling - lateral torsional buckling Steel Bolts 17 Lecture 19 Elements of Architectural Structures ARCH 614 # Beam Connections $$\phi = 0.75$$ $$\overline{R_{n} = 0.6F_{u}A_{nv} + U_{bs}F_{u}A_{nt}} \le 0.6F_{v}A_{gv} + U_{bs}F_{u}A_{nt}$$ - where $U_{\rm bs}$ is 1 for uniform tensile stress Figure 2-1. Block Shear Rupture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology) Figure 2-14. Tension Fracture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology) #### block shear rupture #### tension rupture Steel Bolts 17 Elements of Architectural Structures Lecture 19 ARCH 614 S2012abn ## Other Bolted Connections truss gussets • base plates • splices (AISC - Steel Structures of the Everyday) The Royal Ontario Museum Toronto . Canada Daniel Libeskind (AISC - Steel Structures of the Everyday) Steel Bolts 19 Lecture 19 Elements of Architectural Structures ARCH 614 S2007abn