ELEMENTS OF ARCHITECTURAL STRUCTURES:

FORM. BEHAVIOR. AND DESIGN

ARCH 614 DR. ANNE NICHOLS **SPRING 2013**

steel construction: column design

Steel Columns 1 Lecture 18

Elements of Architectural Structures ARCH 614

Design Methods (revisited)

- know
 - loads or lengths
- select
 - section or load
 - adequate for strength and no buckling

Cor-Ten Steel Sculpture By Richard Serra Museum of Modern Art Fort Worth TX (AISC - Steel Structures of the Everyday)

S2007abn

Structural Steel

- standard rolled shapes (W, C, L, T)
- tubing
- pipe
- built-up

Steel Columns 2 Lecture 18

Elements of Architectural Structures ARCH 614

S2007abr

• AICS 9th ed

$$F_a = \frac{f_{critical}}{F.S.} = \frac{12\pi^2 E}{23(Kl/r)^2}$$

Kl slenderness ratio

- for kl/r
$$\ge C_c$$
 = 126.1 with F_y = 36 ksi
= 107.0 with F_y = 50 ksi

Steel Columns 3 Lecture 18

Elements of Architectural Structures ARCH 614

S2007abr

Steel Columns 4 Lecture 18

Elements of Architectural Structures ARCH 614

r

S2007abn

C_c and Euler's Formula

Elements of Architectural Structures

ARCH 614

Lecture 18

ARCH 614

Short / Intermediate

•
$$L_{e}/r < C_{c}$$

 $F_{a} = \left[1 - \frac{\left(\frac{Kl}{r}\right)^{2}}{2C_{c}^{2}}\right] \frac{F_{y}}{F.S.}$

- where

Steel Columns 7 Lecture 18

Elements of Architectural Structures ARCH 614

S2007abn

Steel Columns 8 Lecture 18

Steel Columns 6

Unified Design

Lecture 18

Elements of Architectural Structures ARCH 614

F2011abr

S2007abr

 $P_a \leq P_n /$ limit states for failure $P_u \leq \phi_c P_n$ $\phi_c = 0.90 | P_n = F_{cr} A_g$ 1. yielding $\frac{KL}{r} \le 4.71 \sqrt{\frac{E}{F_y}} \text{ or } F_e \ge 0.44 F_y$ 2. buckling $\frac{KL}{r} > 4.71 \sqrt{\frac{E}{F_y}}$ or $F_e < 0.44F_y$

Unified Design

•
$$P_n = F_{cr}A_g$$

- for $\frac{KL}{r} \le 4.71\sqrt{\frac{E}{F_y}}$ $F_{cr} = \left[0.658^{\frac{F_y}{F_e}}\right]F_y$
- for $\frac{KL}{r} > 4.71\sqrt{\frac{E}{F_y}}$ $F_{cr} = 0.877F_e$
- where $F_e = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2}$

Procedure for Analysis

- 1. calculate KL/r
 biggest of KL/r with respect to x axes and y axis
- 2. find $F_{cr}^{(see Note)}$ from appropriate equation
 - tables are available <u>Note: text uses F_c</u>
- 3. compute $P_n = F_{cr}A_q$ and old $\phi = 0.85$

4. is
$$P_a \leq P_n / \Omega$$
? or is $P_u \leq \phi P_n$?

• yes: ok

Steel Columns 8

Lecture 18

• no: insufficient capacity and no good

Elements of Architectural Structures

ARCH 614

Steel Columns 9 Lecture 18

Elements of Architectural Structures

F2011abn

Procedure for Design

- 1. guess a size (pick a section)
- 2. calculate KL/r
 - biggest of KL/r with respect to x axes and y axis

and old $\phi = 0.85$

- 3. find $F_a \text{ or } F_{cr}^{(\text{see Note})}$ from appropriate equations Note: text uses F_c
 - or find a chart
- 4. compute $P_n = F_{cr}A_g$

Procedure for Design (cont'd)

- 5. is $P_a \leq P_n/\Omega$? or is $P_u \leq \phi P_n$?
 - yes: ok
 - no: pick a bigger section and go back to step 2.
- 6. check design efficiency
 - percentage of stress =

$$\frac{P_r}{P_c} \cdot 100\%$$

- if between 90-100%: good
- if < 90%: pick a smaller section and go back to step 2.

Steel Columns 10 Lecture 18 S2007abr

Column Charts, ϕF_{cr}

Available Critical Stress, $\phi_c F_{cr}$, for Compression Members, ksi ($F_y = 50$ ksi and $\phi_c = 0.90$)

KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$
1	45.0	41	39.8	81	27.9	121	15.4	161	8.72
2	45.0	42	39.6	82	27.5	122	15.2	162	8.61
3	45.0	43	39.3	83	27.2	123	14.9	163	8.50
4	44.9	44	39.1	84	26.9	124	14.7	164	8.40
5	44.9	45	38.8	85	26.5	125	14.5	165	8.30
6	44.9	46	38.5	86	26.2	126	14.2	166	8.20
7	44.8	47	38.3	87	25.9	127	14.0	167	8.10
8	44.8	48	38.0	88	25.5	128	13.8	168	8.00
9	44.7	49	37.8	89	25.2	129	13.6	169	7.91
10	44.7	50	37.5	90	24.9	130	13.4	170	7.82
11	44.6	51	37.2	91	24.6	131	13.2	171	7.73
12	44.5	52	36.9	92	24.2	132	13.0	172	7.64
13	44.4	53	36.6	93	23.9	133	12.8	173	7.55
14	44.4	54	36.4	94	23.6	134	12.6	174	7.46
15	44.3	55	36.1	95	23.3	135	12.4	175	7.38
16	44.2	56	35.8	96	22.9	136	12.2	176	7.29
17	44.1	57	35.5	97	22.6	137	12.0	177	7.21
18	43.9	58	35.2	98	22.3	138	11.9	178	7.13
19	43.8	59	34.9	99	22.0	139	11.7	179	7.05
20	43.7	60	34.6	100	21.7	140	11.5	180	6.97
21	43.6	61	34.3	101	21.3	141	11.4	181	6.90
22	43.4	62	34.0	102	21.0	142	11.2	182	6.82
23	43.3	63	33.7	103	20.7	143	11.0	183	6.75
24	43.1	64	33.4	104	20.4	144	10.9	184	6.67
25	43 N	65	33.0	105	20.1	145	10.7	185	6 60
el Columns ture 18	5 1 1		Ele	ements of Arc AF	chitectural St RCH 614	ructures			S20

Beam-Column Design

moment magnification (P-Δ)

$$M_{u} = B_{1}M_{max-factored}$$
 $B_{1} = \frac{C_{m}}{1 - (P_{u}/P_{e1})}$

$$C_{m} - \text{modification factor for end conditions}$$

= 0.6 - 0.4(M₁/M₂) or
0.85 restrained, 1.00 unrestrained
$$P_{e1} - \text{Euler buckling strength} \quad P_{e1} = \frac{\pi^{2} EA}{\left(\frac{Kl}{r}\right)^{2}}$$

Steel Columns 15 Lecture 18

Column Charts

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Si a t	65	
	50 - C	65	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		65	
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD L 0 844 1270 766 1150 694 1040 633 6 811 1220 735 1110 667 1000 607	$\phi_c P_n P_n / \Omega_c$	\$cPn	
0 844 1270 766 1150 694 1040 633 6 811 1220 735 1110 667 1000 607	LRFD ASD	LRFD	
6 811 1220 735 1110 667 1000 607	951 571	859	
	913 548	824	
5 8 787 1180 713 1070 646 971 588	899 540	798	
9 772 1160 699 1050 634 952 577	867 520	782	
5 10 756 1140 685 1030 620 932 565	849 509	765	
11 739 1110 669 1010 606 910 551	828 497	747	

Beam-Column Design• LRFD Steel- for $\frac{P_r}{P_c} \ge 0.2$: $\frac{P_u}{\phi_c P_n} + \frac{\vartheta}{9} \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}} \right) \le 1.0$ - for P_r 0.2 P_u M_{ux} M_{uy} M_{uy} M_{uy} M_{uy} M_{uy} M_{uy} M_{uy} M_{uy} M_{uy} M_{uy}

 $- \text{ for } \frac{P_r}{P_c} < 0.2: \qquad \frac{P_u}{2\phi_c P_n} + \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}}\right) \le 1.0$

Steel Columns 17 Lecture 18 Elements of Architectural Structures ARCH 614

Design Steps Knowing Loads (revisited)

Elements of Architectural Structures

ARCH 614

- 1. assume limiting stress
 - buckling, axial stress, ٠ combined stress
- 2. solve for r, A or S
- 3. pick trial section
- analyze stresses 4.
- section ok? 5.

Steel Columns 18

Lecture 18

stop when section is ok 6.

S2007abn

Α

В

Rigid Frame Design (revisited)

- columns in frames
 - ends can be "flexible"
 - stiffness affected by beams and column = EI/L

$$G = \Psi = \frac{\Sigma \frac{EI}{l_c}}{\Sigma \frac{EI}{r}}$$

- for the joint
 - I_c is the column length of each column
 - I_b is the beam length of each beam
 - · measured center to center

Steel Columns 19 Lecture 18

Elements of Architectural Structures ARCH 614

S2009abr

Rigid Frame Design (revisited)

• column effective length, k

