ELEMENTS OF ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

DR. ANNE NICHOLS SPRING 2013

lecture seventeen

steel construction trusses, decks

Lecture 17


Elements of Architectural Structures

Truss Connections

- gusset plates
- bolts
- welds

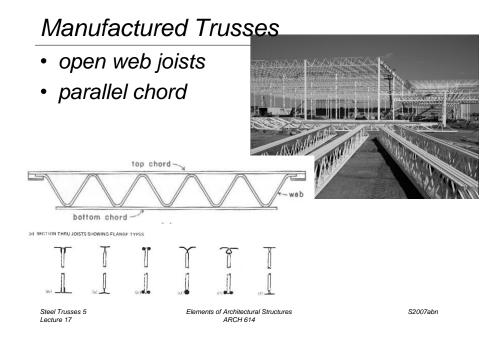
S2009abn

Iron & Steel Trusses

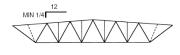
- cast iron
 - 18th century
 - chain links
- wrought-iron
- rivets

Steel Trusses 2

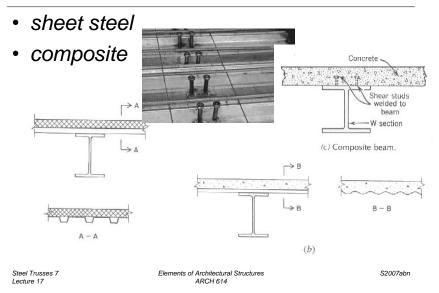
http://nisee.berkeley.edu/godden Elements of Architectural Structures

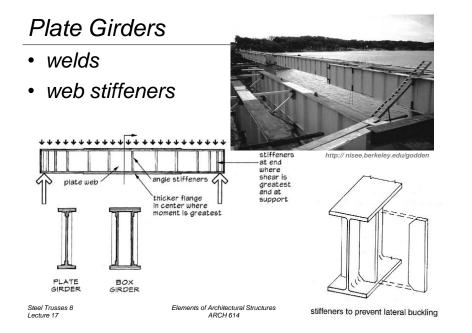

Trusses

- require lateral bracing
- consider buckling
- indeterminate trusses
 - extra members
 - solvable with statics
 - · cables can't hold compression
 - displacement methods
 - · elastic elongation
 - too few members, unstable


Steel Trusses 4

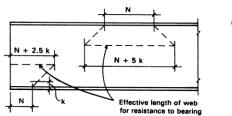
Elements of Architectural Structures


Open Web Joists


- SJI: www.steeljoist.com
- Vulcraft: www.vulcraft.com
 - K Series (Standard)
 - 8-30" deep, spans 8-50 ft
 - LH Series (Long span)
 - 18-48" deep, spans 25-96 ft
 - DLH (Deep Long Spans)
 - 52-72" deep, spans 89-144 ft
 - SLH (Long spans with high strength steel)
 - pitched top chord
 - 80-120" deep, spans 111-240 ft

Steel Trusses 6 Lecture 17 Elements of Architectural Structures ARCH 614 S2007abn

Decks



Web Bearing

max loads

$$P_{\text{n(max-end)}} = (N + 2.5k)F_y t_w$$

$$P_{\text{n(max-interior)}} = (N + 5k)F_{yw}t_w$$

Steel Trusses 9 Lecture 17

Elements of Architectural Structures

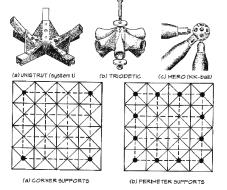

S2007abn

Space Trusses

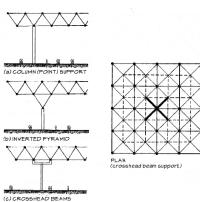
- 3D with 2 force bodies and pins
 - pyramid
 - tetrahedron
- "frames" have fixed joints


• 40's

(a) HALF OCTAHEDRON (equilateral pyramid)


Steel Trusses 10 Lecture 17

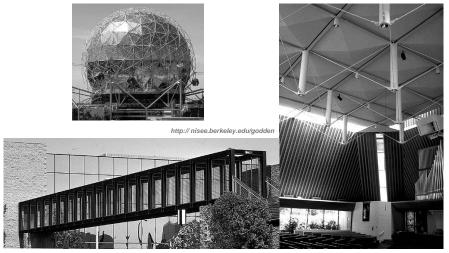
Elements of Architectural Structures ARCH 614


S2007ahn

Space Trusses

· connections

supports

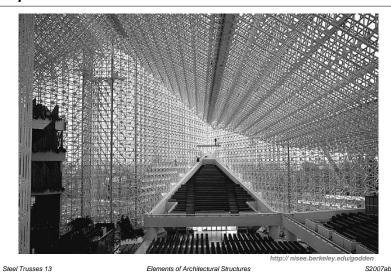


Steel Trusses 11 Lecture 17

Elements of Architectural Structures ARCH 614

S2007abn

Space Trusses

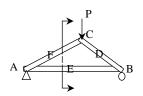


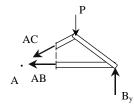
Lecture 17

Elements of Architectural Structures

S2007abn

Space Trusses


ARCH 614


Method of Sections

Lecture 17

Steel Trusses 15

- relies on internal forces being in equilibrium on a section
- cut to expose <u>3 or less</u> members
- coplanar forces $\rightarrow \Sigma M = 0$ too

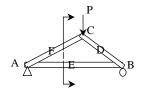
Tensegrities

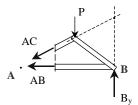
• 3D frame

Steel Trusses 14

Lecture 17

- discontinuous struts
- continuous cables


COLL DE OF ARC


Method of Sections

• joints on or off the section are good to sum moments

ARCH 614

- quick for few members
- not always obvious where to cut or sum

Elements of Architectural Structures ARCH 614 S2007abn

russes 16 17 ents of Architectural Structures ARCH 614 S2007abn