ELEMENTS OF ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

DR. ANNE NICHOLS **S**PRING 2013

lecture sixteei

materials & beams

Steel Beams Lecture 16

Elements of Architectural Structures ARCH 614

S2009abr

Steel Materials

- steel grades
 - ASTM A36 carbon
 - · plates, angles
 - $F_v = 36 \text{ ksi } \& F_u = 58 \text{ ksi}$
 - ASTM A572 high strength low-alloy
 - some beams
 - $F_v = 60 \text{ ksi } \& F_u = 75 \text{ ksi}$
 - ASTM A992 for building framing
 - · most beams
 - $F_v = 50 \text{ ksi } \& F_u = 65 \text{ ksi}$

S2007abr

Steel Beam Design

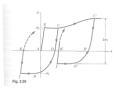
- American Institute of Steel Construction
 - Manual of Steel Construction
 - ASD & LRFD
 - combined in 2005

Steel Beams 2 Lecture 16

Elements of Architectural Structures ARCH 614

S2007abn

-USS TRI-TEN steel

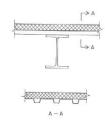

Steel Properties

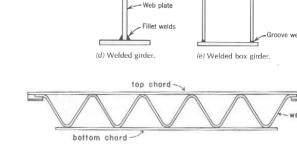
- · high strength to weight ratio
- elastic limit yield (F_v)
- inelastic plastic
- ultimate strength (F_i)
- ductile

strain hardening

· strength sensitive to temperature

- can corrode
- fatigue


Winnepeg DO7


Steel Beams 4

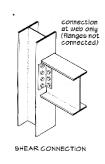
Elements of Architectural Structures

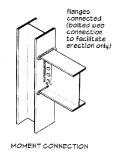
Structural Steel

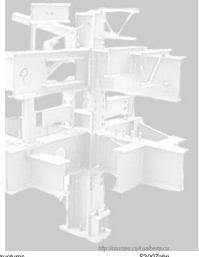
- standard rolled shapes (W, C, L, T)
- open web joists
- plate girders
- decking

Flange plate

Steel Beams 5 Lecture 16


Elements of Architectural Structures


S2007abn


S2012abn

Steel Construction

- welding
- bolts

Steel Beams 6 Lecture 16

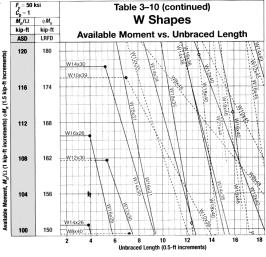
Elements of Architectural Structures

S2007abn

Unified Steel Design

ASD

$$R_a \leq \frac{R_n}{\Omega}$$


- bending (braced)
 - Ω = 1.67
- bending (unbraced*) $\Omega = 1.67$

- shear

- $\Omega = 1.5 \text{ or } 1.67$
- shear (bolts & welds) $\Omega = 2.00$
- shear (welds)
- $\Omega = 2.00$
- * flanges in compression can buckle

Unified Steel Design

 braced vs. unbraced

Steel Beams 8 Lecture 16

AMERICAN INSTITUTE OF STEEL CONSTRUCTION, INC. ARCH 614

Steel Beams 7 Lecture 16

Elements of Architectural Structures ARCH 614

LRFD

- loads on structures are
 - not constant

- can be more influential on failure
- happen more or less often
- UNCERTAINTY

$$R_u = \gamma_D R_D + \gamma_L R_L \le \phi R_n$$

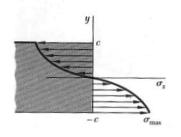
 ϕ - resistance factor

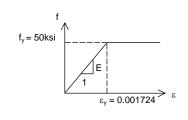
γ - load factor for (D)ead & (L)ive load

Steel Beams 9 Lecture 16 Elements of Architectural Structures ARCH 614 S2007abn

LRFD Load Combinations

ASCE-7 (2010)

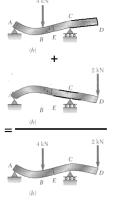

- 1.4D
- $1.2D + 1.6L + 0.5(L_r \text{ or S or R})$
- $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W)$
- $1.2D + 1.0W + L + 0.5(L_r \text{ or S or R})$
- 1.2D + 1.0E + L + 0.2S
- 0.9D + 1.0W
- 0.9D + 1.0E
 - F has same factor as D in 1-5 and 7
 - · H adds with 1.6 and resists with 0.9 (permanent)


Steel Beams 11 Lecture 16 Elements of Architectural Structures ARCH 614

S2007abn

LRFD Steel Beam Design

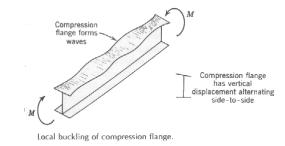
- limit state is yielding all across section
- · outside elastic range
- load factors & resistance factors



Steel Beams 10 Lecture 16 Elements of Architectural Structures ARCH 614 S2007abn

Beam Design Criteria (revisited)

- strength design
 - bending stresses predominate
 - shear stresses occur
- serviceability
 - limit deflection
 - stability
- superpositioning
 - use of beam charts
 - elastic range only!
 - "add" moment diagrams
 - "add" deflection CURVES (not maximums)


Steel Beams 12 Lecture 16 Elements of Architectural Structures ARCH 614

Steel Beams

- · lateral stability bracing
- local buckling stiffen, or bigger I_v

Steel Beams 13 Lecture 16

Flements of Architectural Structures ARCH 614

S2007ahn

Local Buckling

flange

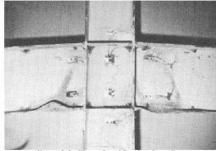
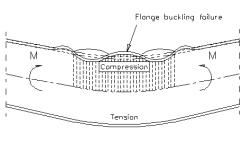
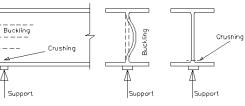


Figure 2-5. Flange Local Bending Limit State (Beedle, L.S., Christopher, R., 1964)

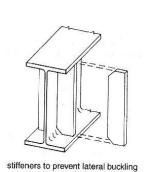

web

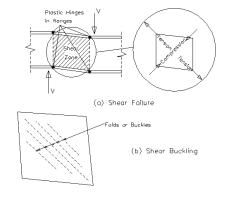


S2007abn

Local Buckling

- steel I beams
- flange
 - buckle in direction of smaller radius of gyration
- web
 - force
 - "crippling"


Steel Beams 14 Lecture 16


Elements of Architectural Structures

S2007abn

Shear in Web

- · panels in plate girders or webs with large shear
- buckling in compression direction
- add stiffeners

Steel Beams 16

Elements of Architectural Structures

Shear in Web

plate girders and stiffeners

Steel Beams 17 Lecture 16

Elements of Architectural Structures

S2010abn

S2007abr

I RFD - Flexure

$$\Sigma \gamma_i R_i = M_u \le \phi_b M_n = 0.9 F_y Z$$

M,, - maximum moment

 ϕ_b - resistance factor for bending = 0.9

 M_n - nominal moment (ultimate capacity)

 F_v - yield strength of the steel

Z - plastic section modulus*

Steel Beams

bearing

- provide adequate area
- prevent local yield of flange and web

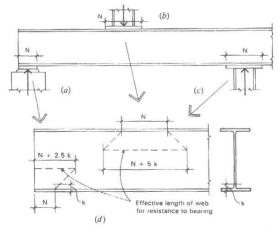
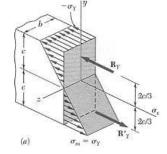


Figure 9.10 Considerations for bearing in beams with thin webs, as related to web crippling (buckling of the thin web in compression).

Steel Beams 18 Lecture 16


Elements of Architectural Structures

S2010abn

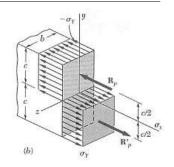
Internal Moments - at yield

material hasn't failed

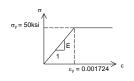
$$M_{y} = \frac{I}{c} f_{y} = \frac{bh^{2}}{6} f_{y}$$

$$= \frac{b(2c)^2}{6} f_y = \frac{2bc^2}{3} f_y$$

Flements of Architectural Structures Steel Beams 18 Lecture 16

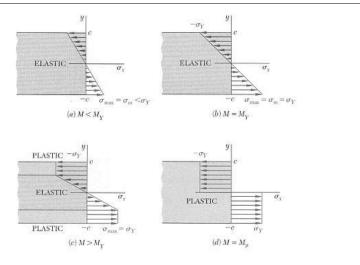

Steel Reams 19 Lecture 16

Flements of Architectural Structures

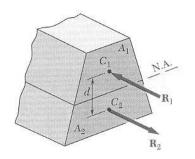

S2007abr

Internal Moments - ALL at yield

- · all parts reach yield
- plastic hinge forms
- ultimate moment
- $A_{tension} = A_{compression}$


$$M_p = bc^2 f_y = \frac{3}{2} M_y$$

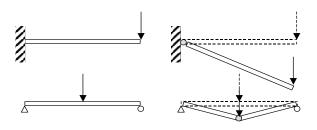
Steel Beams 20


Elements of Architectural Structures ARCH 614 S2007abn

Plastic Hinge Development

n.a. of Section at Plastic Hinge

- cannot guarantee at centroid
- $f_y.A_1 = f_y.A_2$
- moment found from yield stress times moment area



$$M_p = f_y A_1 d = f_y \sum_{n,a} A_i d_i$$

Steel Beams 21 Lecture 16 Elements of Architectural Structures ARCH 614 S2007abn

Plastic Hinge Examples

stability can be effected

Steel Beams 22 Lecture 16 Elements of Architectural Structures ARCH 614 S2007abn

Steel Beams 23 Lecture 16 Elements of Architectural Structures ARCH 614

Plastic Section Modulus

shape factor, k

$$k = \frac{M_p}{M_y}$$

= 3/2 for a rectangle

 \approx 1.1 for an I

$$k = \frac{Z}{S}$$

• plastic modulus, Z

$$Z = \frac{M_p}{f_y}$$

Steel Beams 24 Lecture 16

Flements of Architectural Structures ARCH 614

S2007ahn

LRFD - Flexure Design

- limit states for beam failure
 - 1. yielding

$$L_{ing} = 1.76 r_{y} \sqrt{\frac{F_{y}}{F}}$$

- 2. lateral-torsional buckling $L_{y}=1.76r_{y}$
- flange local buckling
- 4. web local buckling
- minimum M_n governs

$$\sum \gamma_i R_i = M_u \le \phi_b M_n$$

S2007abn

LRFD - Shear

$$\Sigma \gamma_i R_i = V_u \le \phi_v V_n = 1.0(0.6 F_{yw} A_w)$$

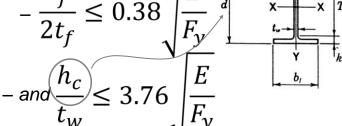
V,, - maximum shear

 ϕ_{v} - resistance factor for shear = 0.9

V_n - nominal shear

 F_{vw} - yield strength of the steel in the web

 A_{w} - area of the web = $t_{w}d$


Steel Beams 25 Lecture 16

Elements of Architectural Structures

S2007abn

Compact Sections

- plastic moment can form before any buckling TABLE A.3 Properties of W Shapes
- criteria

Steel Beams 28

Elements of Architectural Structures

S2012abn

Lateral Torsional Buckling

$$M_n = C_b \begin{bmatrix} moment \ based \ on \end{bmatrix} \le M_p$$

$$C_b = \frac{12.5M_{\text{max}}}{2.5M_{\text{max}} + 2M_A + 4M_B + 3M_C}$$

 $C_b = modification factor$

*M*_{max} - |max moment|, unbraced segment

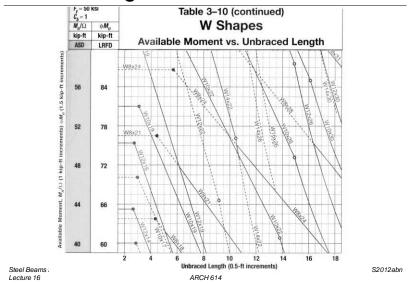
 M_A - |moment|, 1/4 point

 $M_B = |moment|$, center point

 $M_C = |moment|$, 3/4 point

Steel Beams 28

Elements of Architectural Structure
ARCH 614


S2007abn

S2007abr

Charts & Deflections

- beam charts
 - solid line is most economical
 - dashed indicates there is another more economical section
 - self weight is NOT included in M_n
- deflections
 - no factors are applied to the loads
 - often governs the design

Beam Design Charts

Design Procedure (revisited)

- 1. Know unbraced length, material, design method (Ω, ϕ)
- 2. Draw V & M, finding M_{max}
- 3. Calculate $Z_{\text{req'd}}$ $\left(f_b \leq F_b\right)$ $\left(M_u \leq \phi_b M_n\right)$
- 4. Choose (economical) section from section or beam capacity charts

Steel Beams 31

Elements of Architectural Structures ARCH 614 S2009abn

Beam Charts by Z_x (pg. 250)

Designation		$F_y = 36 \text{ ksi}$				$F_y = 50 \text{ ksi}$								
	Z_x in. ³	L_p ft	L _r ft	M _p kip-ft	M, kip-ft	L _p ft	L, ft	M _p kip-ft	M _r kip-ft	r _y in.	$b_f/2t_f$	h/t _w	X ₁ ksi	$\begin{array}{c} X_2 \times 10^6 \\ (1/\text{ksi})^2 \end{array}$
W 33 × 141	514	10.1	30.1	1,542	971	8.59	23.1	2,142	1,493	2.43	6.01	49.6	1,800	17,800
W 30 × 148	500	9.50	30.6	1,500	945	8.06	22.8	2,083	1,453	2.28	4.44	41.6	2,310	6,270
W 24 × 162	468	12.7	45.2	1,404	897	10.8	32.4	1.950	1.380	3.05	5.31	30.6	2.870	2,260
W 24 \times 146	418	12.5	42.0	1,254	804	10.6	30.6	1,742	1,237	3.01	5.92	33.2	2,590	3,420
W 33 × 118	415	9.67	27.8	1,245	778	8.20	21.7	1,729	1,197	2.32	7.76	54.5	1,510	37,700
W 30 × 124	408	9.29	28.2	1,224	769	7.88	21.5	1,700	1,183	2.23	5.65	46.2	1,930	13,500
W 21 × 147	373	12.3	46.4	1,119	713	10.4	32.8	1,554	1,097	2.95	5.44	26.1	3,140	1,590
W 24 × 131	370	12.4	39.3	1.110	713	10.5	29.1	1.542	1.097	2.97	6.70	35.6	2,330	5,290
W 18 \times 158	356	11.4	56.5	1,068	672	9.69	38.0	1,483	1,033	2.74	3.92	19.8	4,410	403
W 30 × 108	346	8.96	26.3	1,038	648	7.60	20.3	1,442	997	2.15	6.89	49.6	1,680	24,200
W 27 × 114	343	9.08	28.2	1.029	648	7.71	21.3	1.429	997	2.18	5.41	42.5	2.100	9,220
W 24 × 117	327	12.3	37.1	981	631	10.4	27.9	1,363	970	2.94	7.53	39.2	2.090	8,190
W 21 × 122	307	12.2	41.0	921	592	10.3	29.8	1,279	910	2.92	6.45	31.3	2,630	3,160
W 18 × 130	290	11.3	47.7	870	555	9.55	32.8	1,208	853	2.7	4.65	23.9	3,680	810
W 30 × 90	283	8.71	24.8	849	531	7.39	19.4	1,179	817	2.09	8.52	57.5	1,410	49,600
W 24×103	280	8.29	27.0	840	531	7.04	20.0	1,167	817	1.99	4.59	39.2	2,390	5,310
W 27 × 94	278	8.83	25.9	834	527	7.50	19.9	1,158	810	2.12	6.70	49.5	1,740	19,900

Steel Beams 33 Lecture 16 Elements of Architectural Structures ARCH 614 S2010abn

Beam Design (revisited)

- 6. Evaluate shear stresses horizontal
 - $(f_v \le F_v)$ or $(V_u \le \phi_v V_n)$
 - W and rectangles $f_{v-\text{max}} = \frac{3V}{2A} \approx \frac{V}{A_{web}}$
 - thin walled sections $f_{v-{
 m max}}=rac{VQ}{Ib}$

Beam Design (revisited)

 4^* . Include self weight for M_{max}

and repeat 3 & 4 if necessary

W 18 x 50

Weight per linear foot
Nominal depth
Wide Flange
C 9 x 15

Weight per linear foot
Nominal depth
Channel
L 6 x 4 x 1/2

5. Consider lateral stability

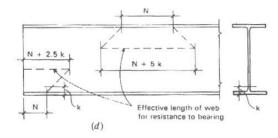
Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper

Stability Thickness Leg lengths Angle

Steel Beams 32 Lecture 16

Steel Beams 34


Lecture 16

Elements of Architectural Structures ARCH 614 S2009abn

Beam Design (revisited)

7. Provide adequate bearing area at supports

$$f_p = \frac{P}{A} \le F_p$$

Steel Beams 33 Elements of Architectural Structures
Lecture 16 ARCH 614

S2007abn

Elements of Architectural Structures ARCH 614

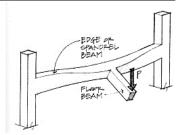
Beam Design (revisited)

8. Evaluate torsion

$$(f_v \leq F_v)$$

circular cross section

$$f_{v} = \frac{T\rho}{J}$$


rectangular

$$f_{v} = \frac{T}{c_{1}ab^{2}}$$

Steel Beams 35 Lecture 16

Steel Beams 37

Elements of Architectural Structures ARCH 614

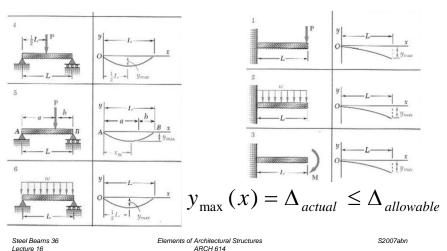
a/b	c ₁	C ₂		
1.0	0.208	0.1406		
1.2	0.219	0.1661		
1.5	0.231	0.1958		
2.0	0.246	0.229		
2.5	0.258	0.249		
3.0	0.267	0.263		
4.0	0.282	0.281		
5.0	0.291	0.291		
10.0	0.312	0.312		

S2007abn

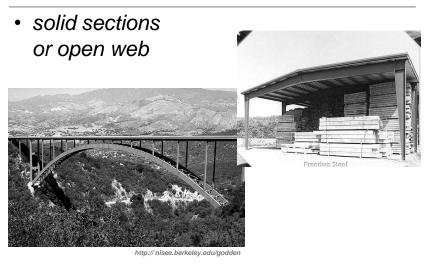
Load Tables & Equivalent Load

uniformly distributed loads

• equivalent "w" $M_{\text{max}} = \frac{W_{equivalent}L}{8}$


		Ba	S sed on a							OISTS, Pounds			plf)			_
Joist Designation	8K1	10K1	12K1	12K3	12K5	14K1	14K3	14K4	14K6	16K2	16K3	16K4	16K5	16K6	16K7	16K9
Depth (in.)	8	10	12	12	12	14	14	14	14	16	16	16	16	16	16	16
Approx. Wt (lbs./ft.)	5.1	5.0	5.0	5.7	7.1	5.2	6.0	6.7	7.7	5.5	6.3	7.0	7.5	8.1	8.6	10.0
Span (ft.)																
8	825 550							loo	A f	ar li	100	loo	4 4	ofla	ooti	on li
9	825 550							IUa	un	וו וכ	VE	IUa	u u	CIIC	;Cu	OI I II
10	825 480	825 550							in	RF	-D	tot	al ii	n R	ΙΔ	CK
11	798 377	825 542							""	1 \	· ,	iOi	ui ii	, ,		υ, · _
12	666 288	825 455	825 550	825 550	825 550											
13	565 225	718 363	825 510	825 510	825 510											
14	486 179	618 289	750 425	825 463	825 463	825 550	825 550	825 550	825 550							
15	421 145	537 234	651 344	814 428	825 434	766 475	825 507	825 507	825 507							
16	369 119	469 192	570 282	714 351	825 396	672 390	825 467	825 467	825 467	825 550	825 550	825 550	825 550	825 550	825 550	825 550
		415 159	504 234	630 291	825 366	592 324	742 404	825 443	825 443	768 488	825 526	825 526	825 526	825 526	825 526	825 526
17			448	561	760 317	528 272	661 339	795 397	825 408	684 409	762 456	825 490	825 490	825 490	825 490	825 490
18		369 134	197	245						612	682	820	825	825 455	825 455	825
18		134 331 113	197 402 167	502 207	681 269	472 230	592 287	712 336	825 383	347	386	452	455	455		455
18 19 20		134	197 402 167 361 142	502 207 453 177	681 269 613 230	472 230 426 197	534 246	336 642 287	383 787 347	347 552 297	386 615 330	739 386	825 426	825 426	825 426	825 426
18 19 20 21		134 331 113 298	197 402 167 361 142 327 123	502 207 453 177 409 153	681 269 613 230 555 198	472 230 426 197 385 170	534 246 483 212	336 642 287 582 248	383 787 347 712 299	347 552 297 499 255	386 615 330 556 285	739 386 670 333	825 426 754 373	825 426 822 405	825 426 825 406	825 426 825 406
18 19 20		134 331 113 298	197 402 167 361 142 327	502 207 453 177 409	681 269 613 230	472 230 426 197 385	534 246 483	336 642 287	383 787 347 712	347 552 297 499	386 615 330	739 386 670	825 426 754	825 426 822	825 426 825	825 426 825

Elements of Architectural Structures


ARCH 614

Beam Design (revisited)

9. Evaluate deflections - NO LOAD FACTORS

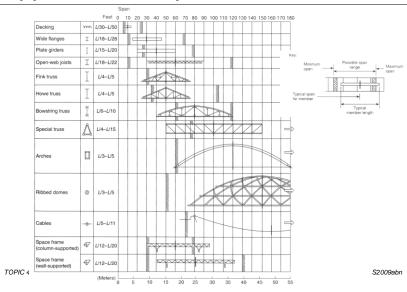
Steel Arches and Frames

Elements of Architectural Structures ARCH 614

TOPIC 38

S2009abn

Steel Shell and Cable Structures



TOPIC 39 Elements of Architectural Structures S2009abn
ARCH 614

Approximate Depths

