ELEMENTS OF ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 614 DR. Anne Nichols Spring 2013

Air Dry

wood construction: materials & beams

Wood Beams 1 Lecture 13 ents of Architectural Structures ARCH 614 S2009abn

Timber

- lightweight : strength ~ like steel
- strengths vary
 - by wood type
 - by direction
 - by "flaws"
- size varies by tree growth
- renewable resource
- manufactured wood
 - assembles pieces
 - adhesives

Wood Beams 3 Lecture 13 Elements of Architectural Structures ARCH 614

S2007abn

0.50

Specific Gravity

Wood Beam Design

- National Design Specification
 - National Forest Products Association
 - ASD & LRFD
 - adjustment factors x tabulated stress = allowable stress
 - adjustment factors terms, C with subscript
 - i.e, bending:

 $f_b \leq F'_b = F_b \times (product \ of \ adjustment \ factors)$

Wood B	eams	2
Lecture	13	

Wood Beams 4

Lecture 13

Elements of Architectural Structures ARCH 614 S2007abn

Wood Properties

• cell structure and density

softwood

Elements of Architectural Structures ARCH 614

Wood Properties

- moisture
 - exchanges with air easily
 - excessive drying causes warping and shrinkage
 - strength varies some
- temperature
 - steam
 - volatile products
 - combustion

Wood Beams 5 Lecture 13 Elements of Architectural Structures

Elements of Architectural Structures

ARCH 614

S2007abr

Wood Properties

- load duration
 - short duration
 - higher loads
 - normal duration
 - > 10 years
- creep
 - additional

deformation with no additional load

Wood Beams 6 Lecture 13 Elements of Architectural Structures ARCH 614 S2007abn

Structural Lumber

- dimension 2 x's (nominal)
- beams, posts, timber, planks
- grading

- select structural
- no. 1, 2, & 3
- tabular values by species
- glu-lam
- plywood Wood Beams 7 Lecture 13

Adjustment Factors

- terms
 - $-C_D = load duration factor$
 - $-C_{M} =$ wet service factor
 - 1.0 dry ≤ 16% MC
 - $-C_F = size \ factor$
 - visually graded sawn lumber and round timber > 12" depth

$$C_F = (12/d)^{\frac{1}{9}} \le 1.0$$

Table 5.2 (pg 177)

Wood Beams 8 Lecture 13 Elements of Architectural Structures ARCH 614 S2007abn

Adjustment Factors

• terms

- $-C_{fu} = flat$ use factor
 - not decking
- $-C_i = incising factor$
 - increase depth for pressure treatment
- $-C_t = temperature factor$
 - · lose strength at high temperatures

Adjustment Factors

• terms

Wood Beams 10

Lecture 13

- $-C_r = repetitive member factor$
- $-C_{H} =$ shear stress factor
 - splitting
- $-C_V = volume \ factor$
 - same as C_F for glue laminated timber
- $-C_L = beam$ stability factor
 - beams without full lateral support
- $-C_{\rm C}$ = curvature factor for laminated arches

Elements of Architectural Structures

ARCH 614

Wood Beams 9
Lecture 13

Elements of Architectural Structures ARCH 614

Allowable Stresses

- design values
 - F_b: bending stress
 - $-F_t$: tensile stress strong
 - $-F_{v}$: horizontal shear stress w
 - *F_{c⊥}*: compression stress (perpendicular to grain)
 - *F_c*: compression stress (parallel to grain) strong
 - E: modulus of elasticity
 - $-F_{p}$: bearing stress (parallel to grain)

S2007abr

Load Combinations

- design loads, take the bigger of
 - (dead loads)/0.9
 - (dead loads + any possible combination of live loads)/C_D
- deflection limits
 - no load factors
 - for stiffer members:
 - $\Delta_T \max from LL + 0.5(DL)$

Wood Beams 12 Lecture 13 S2007abr

Beam Design Criteria

- strength design
 - bending stresses predominate
 - shear stresses occur
- serviceability
 - limit deflection and cracking
 - control noise & vibration
 - no excessive settlement of foundations
 - durability
 - appearance
 - component damage
 - ponding

Wood Beams 13 Lecture 13 Elements of Architectural Structures ARCH 614

S2009abn

Deflection Limits

· based on service condition, severity

Use	LL only	DL+LL
Roof beams:		
Industrial	L/180	L/120
Commercial		
plaster ceiling	L/240	L/180
no plaster	L/360	L/240
Floor beams:		
Ordinary Usage	L/360	L/240
Roof or floor (damageable elements)		L/480

Wood Beams 14 Lecture 13 S2007abn

Beam Design Criteria

- superpositioning
 - use of beam charts
 - elastic range only!
 - "add" moment diagrams
 - "add" deflection CURVES (not maximums)

Wood Beams 14 Lecture 13 Elements of Architectural Structures ARCH 614

 $=\frac{wx}{24EI}(l^3-2lx^2+x^3)$

S2009abn

Lateral Buckling

- lateral buckling caused by compressive forces at top coupled with insufficient rigidity
- can occur at low stress levels
- stiffen, brace or bigger I_v

Wood Beams 15 Lecture 13 Elements of Architectural Structures ARCH 614

Design Procedure

- 1. Know F_{all} for the material or F_{ll} for LRFD
- 2. Draw V & M, finding M_{max}
- 3. Calculate $S_{req'd}$ $(f_b \leq F_b)$
- 4. Determine section size

Wood Beams 16 Lecture 13 Elements of Architectural Structures ARCH 614

Beam Design

- 6. Evaluate shear stresses horizontal
 - $(f_v \leq F_v)$
 - W and rectangles $f_{v-\max} = \frac{3V}{2A} \approx \frac{V}{A_{web}}$
 - general

 $f_{v-\max} = \frac{VQ}{Ib}$

Beam Design

- 4*. Include self weight for M_{max}
 - and repeat 3 & 4 if necessary
- 5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.


```
Wood Beams 17
Lecture 13
```

Elements of Architectural Structures ARCH 614 S2007abn

Beam Design

7. Provide adequate bearing area at supports f

Wood Beams 18 Lecture 13 Elements of Architectural Structures ARCH 614 S2007abn

h

S2007abr

b

 $S = \frac{bh^2}{2}$

Wood Beams 19 Lecture 13 Elements of Architectural Structures ARCH 614

Beam Design

ARCH 614

Lecture 13

Joists & Rafters

- allowable load tables
- allowable length tables for common live & dead loads
- lateral bracing needed
- common spacings

Wood Beams 22 Lecture 13 Elements of Architectural Structures ARCH 614 S2007abn

Beam Design

Engineered Wood

- plywood
 - veneers at different orientations
 - glued together
 - split resistant
 - higher and uniform strength
 - limited shrinkage and swelling
 - used for sheathing, decking, shear walls, diaphragms

Wood Beams 23 Lecture 13 CPOSS BAU

Engineered Wood

- glued-laminated timber
 - qlulam
 - short pieces glued together
 - straight or curved
 - grain direction parallel
 - higher strength
 - more expensive than sawn timber
 - large members (up to 100 feet!)
 - flexible forms

Wood Beams 24
Lecture 13

Elements of Architectural Structures ARCH 614

Timber Flements

- stressed-skin elements
 - modular built-up "plates"
 - typically used for floors or roofs

Lecture 13

ARCH 614

S2007abn

Engineered Wood

- I sections
 - beams
- other products
 - pressed veneer strip panels (Parallam)
- wood fibers
 - Hardieboard: cement & wood

Wood Beams 25 Lecture 13

Elements of Architectural Structures ARCH 614

S2007abn

Timber Flements

- built-up box sections
 - built-up beams
 - usually site-fabricated
 - bigger spans

Wood Beams 27 Lecture 13

Elements of Architectural Structures ARCH 614

S2007abn

Timber Elements

- trusses
 - long spans
 - versatile
 - common in roofs

Wood Beams 28 Lecture 13

Elements of Architectural Structures ARCH 614

S2007abn

Timber Elements

• folded plates and arch panels - usually of plywood

Wood Beams 30 Lecture 13

Elements of Architectural Structures ARCH 614

S2009abn

Timber Flements

- · arches and lamellas
 - arches commonly laminated timber
 - long spans
 - usually only for roofs

Approximate Depths

Wood Beams 31 Lecture 13

S2009abn