ELEMENTS OF **A**RCHITECTURAL **S**TRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 614

DR. ANNE NICHOLS

SPRING 2013

lecture twelve

design methods, structural codes

Methods & Codes 1

Elements of Architectural Structures ARCH 614 S2009abn

Design Methods

- different approaches to meeting strength/safety requirements
 - allowable stress design (elastic)
 - ultimate strength design
 - limit state design
 - plastic design
 - load and resistance factor design
- assume a behavior at failure or other threshold and include a margin of safety

Design

- · factors out of the designer's control
 - loads
 - occurrence
- factors within the designer's control
 - choice of material
 - "cost" of failure (F.S., probability, location)
 - economic design method
 - analysis method

Methods & Codes 2 Lecture 12 Elements of Architectural Structures ARCH 614 S2007abn

Load Types

- D = dead load
- L = live load
- $L_r = live roof load$
- W = wind load
- S = snow load
- E = earthquake load

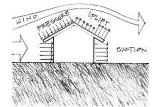


Figure 1.13 Wind loads on a structure

- R = rainwater load or ice water load
- T = effect of material & temperature
- H = hydraulic loads from soil (F from fluids)

Methods & Codes 3 Lecture 12 Elements of Architectural Structures ARCH 614 S2007abn

Methods & Codes 4 Lecture 12 Elements of Architectural Structures ARCH 614

Weight of Materials

for a volume

 $-W = \gamma V$ where γ is weight/volume

 $-W=\gamma tA$ for an extruded area with height of t

ARCH 614

LOAD SOURCES 153

TABLE 4.1 Weight of Building Construction

	psf^a	kPa ^a
Roofs		
3-ply ready roofing (roll, composition)	1	0.05
3-ply felt and gravel	5.5	0.26
5-ply felt and gravel	6.5	0.31
Shingles: Wood	2	0.10
Asphalt	2-3	0.10-0.13
Clay tile	9-12	0.43-0.58
Concrete tile	6-10	0.29-0.48
Slate, 3 in.	10	0.48

Building Codes

occupancy

Lecture 12

- · construction types
- structural chapters
 - loads, tests, foundations

OCCUPANCY OR USE	UNIFORM (psf)	CONCENTRATED (lbs.)
Apartments (see residential)	_	_
Access floor systems Office use Computer use	50 100	2,000 2,000
3. Armories and drill rooms	150	_
4. Assembly areas and theaters Fixed seats (fastened to floor) Lobbies Movable seats Stages and platforms Follow spot, projections and control rooms Calvalks	60 100 100 125 50	_

- structural materials, assemblies
 - roofs
 - concrete
 - masonry
 - steel

Building Codes

- documentation
 - laws that deal with planning, design, construction, and use of buildings
 - regulate building construction for
 - fire, structural and health safety
 - cover all aspect of building design
 - references standards
 - · acceptable minimum criteria
 - material & structural codes

Methods & Codes 6 Lecture 12 Elements of Architectural Structures ARCH 614 S2007abn

Prescribed Loads

- ASCE-7
 - live load (not roof) reductions allowed
- International Building Code
 - occupancy
 - wind: pressure to static load
 - seismic: shear load function of mass and response to acceleration

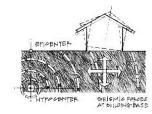


Figure 1.14 Earthquake loads on a structure

Methods & Codes 7 Lecture 12 Elements of Architectural Structures ARCH 614 S2007abn

Methods & Codes 8 Elements of Architectural Structures
Lecture 12 ARCH 614

Code Reduction of Live Loads

- for (ordinary) live loads
 - factored area supported ≥ 400 ft²
 - reduction can't exceed
 - 0.5L_o (one floor) or 0.4L_o (more)

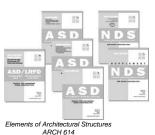
$$L = L_o \left(0.25 + \frac{15}{\sqrt{K_{LL} A_T}} \right)$$

LIVE LOAD ELEMENT FACTOR, KL		
Ku		
4		
4		
3		
2		
2 2		
2		
1		
- 1		

TABLE 1607.10.1

- for live loads > 100 lb/ft²
 - live load reduction of 20% on columns
- for (ordinary) roofs: $L_r = L_o R_1 R_2$
 - 12 $lb/ft^2 \le L_r \le 20 lb/ft^2$

Methods & Codes 9 Lecture 12


Elements of Architectural Structure ARCH 614 S2013abn

Structural Codes

- Design Codes
 - Wood
 - NDS
 - Steel
 - AISC
 - Concrete
 - ACI
 - AASHTO
 - Masonry
 - MSJC

Structural Codes

- prescribe loads and combinations
- · prescribe design method
- · prescribe stress and deflection limits
- · backed by the profession
- may require design to meet performance standards
- related to material or function

Methods & Codes 8 Lecture 12 Elements of Architectural Structures ARCH 614 S2007abn

Design Methods

- · probability of loads and resistance
- · material variability
- · overload, fracture, fatigue, failure
- · allowable stress design

$$f_{actual} = \frac{P}{A} \le f_{allowed} = \frac{f_{capacity}}{F.S.}$$

- · limit state design
 - design loads & capacities

Methods & Codes 10 Lecture 12 Elements of Architectural Structures ARCH 614

Allowable Stress Design

- historical method
- a.k.a. working stress, strength design
- stresses stay in ELASTIC range

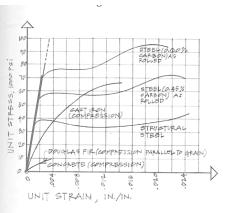


Figure 5.20 Stress-strain diagram for various materials.

Methods & Codes 13 Lecture 12 Elements of Architectural Structures
ARCH 614

S2013abn

Limit State Design

- a.k.a. strength design
- stresses go to limit (strain outside elastic range)
- loads may be factored
- resistance or capacity reduced by a factor
- based on material behavior
- "state of the art"

ASD Load Combinations

ASCE-7 (2010)

- D
- D + L
- $D + (L_r \text{ or } S \text{ or } R)$
- $D + 0.75L + 0.75(L_r or S or R)$
- D + (0.6W or 0.7E)
- D + 0.75L + 0.75(0.6W or 0.7E) + (0.75L, or S or R)
- 0.6D + (0.6W or 0.7E)

Methods & Codes 14 Lecture 12 Elements of Architectural Structures ARCH 614 S2013ahn

Limit State Design

- load and resistance factor design (LRFD)
 - loads:
 - · not constant,
 - · possibly more influential on failure
 - · happen more or less often
 - UNCERTAINTY

$$\gamma_D P_D + \gamma_L P_L \le \phi P_u$$

 ϕ - Resistance factor

γ - Load factor for (D)ead & (L)ive load

LRFD Load Combinations

ASCE-7 (2010)

•
$$1.2D + 1.6L + 0.5(L_r \text{ or S or R})$$

•
$$1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W)$$

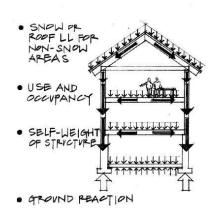
•
$$1.2D + 1.0W + L + 0.5(L_r \text{ or S or R})$$

•
$$1.2D + 1.0E + L + 0.2S$$

•
$$0.9D + 1.0W$$

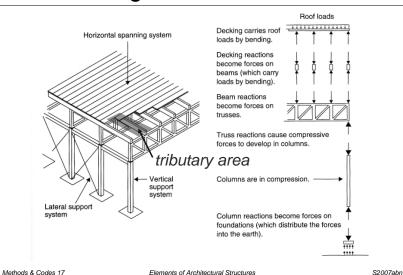
•
$$0.9D + 1.0E$$

H adds with 1.6 and resists with 0.9 (permanent)


Methods & Codes 17 Lecture 12

Lecture 12

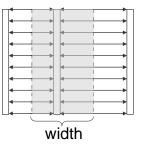
Elements of Architectural Structures ARCH 614 S2013abn


Load Tracing

- how loads are transferred
 - usually starts at top
 - distributed by supports as <u>actions</u>
 - distributed by tributary areas

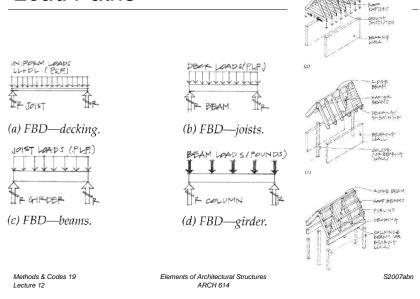
Methods & Codes 16 Lecture 12 Elements of Architectural Structures ARCH 614 S2007abn

Load Tracing



ARCH 614

Load Tracing


- tributary load
 - think of water flow
 - "concentrates" load of area into center

$$w = \left(\frac{load}{area}\right) \times \left(tributary\ width\right)$$

Methods & Codes 18 Lecture 12 Elements of Architectural Structures ARCH 614

Load Paths

Load Paths

· openings & pilasters

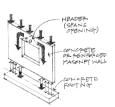


Figure 4.15 Arching over wall openings.

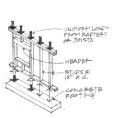


Figure 4.16 Stud wall with a window opening.

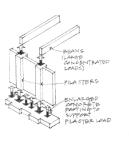


Figure 4.17 Pilasters supporting concentrated

Load Paths

wall systems

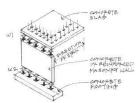


Figure 4.12 Uniform wall load from a slab.

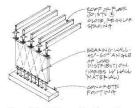


Figure 4.13 Uniform wall load from rafters

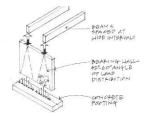
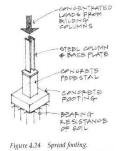


Figure 4.14 Concentrated loads from widely


Methods & Codes 20 Lecture 12

Elements of Architectural Structures ARCH 614

S2007abn

Load Paths

foundations

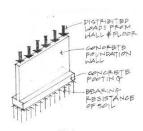


Figure 4.25 Wall footing.

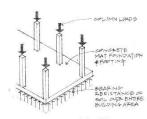
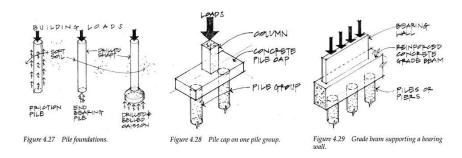


Figure 4.26 Mat or raft foundation.

Methods & Codes 21

Elements of Architectural Structures ARCH 614


S2007abn

Methods & Codes 22

Elements of Architectural Structures ARCH 614

Load Paths

• deep foundations

Methods & Codes 23 Lecture 12 Elements of Architectural Structures ARCH 614