

Rigid Frames

behavior

Lecture 25

Rigid Frames

- rigid frames have no pins
- frame is all one body
- joints transfer moments and shear
- typically statically indeterminate
- types
 - portal
 - gable

Rigid Frames 8 Lecture 25

Flements of Architectural Structures ARCH 614

S2004ahn

Rigid Frames

- moments get redistributed
- deflections are smaller
- effective column lengths are shorter
- very sensitive to settling

Rigid Frames

- · resists lateral loadings
- · shape depends on stiffness of beams and columns
- 90° maintained

Elements of Architectural Structures ARCH 614

candboard guesets for joint rigidity (typical)

S2004ahn

Rigid Frames

- staggered truss
 - rigidity
 - clear stories

Rigid Frames 12 Lecture 25

Elements of Architectural Structures ARCH 614

S2004ahr

Rigid Frames

- connections
 - steel

Rigid Frames 11

Lecture 25

- concrete

PSF FRAME MODELS

DEFLECTION DIAGRAMS Figure 9.19: Model demonstration of the effects of varying the stiffness of beams and columns when a building frame is subjected to lateral loads.

Rigid Frames 13 Elements of Architectural Structures Lecture 25 ARCH 614

Fixed

S2004abn

Braced Frames

- pin connections
- bracing to prevent lateral movements

Rigid Frames 14 Lecture 25

http://nisee.berkeley.edu/godder Elements of Architectural Structures

Braced Frames

- types of bracing
 - knee-bracing
 - diagonal
 - -X

Rigid Frames 15

Lecture 25

- K or chevron
- shear walls

Elements of Architectural Structures ARCH 614

S2004abr

shear walls

Shear Walls

· resist lateral load in plane with wall

Rigid Frames 16 Lecture 25

Elements of Architectural Structures

S2004abn

Compression Members

- designed for strength & stresses
- · designed for serviceability & deflection
- · need to design for stability
 - ability to support a specified load without sudden or unacceptable deformations

Column Buckling

- · axially loaded columns
- long & slender
 - unstable equilibrium = buckling
 - sudden and not good

Stability and Columns 9 Lecture 22

Elements of Architectural Structures ARCH 614

S2004abr

Stability and Columns 14 Lecture 22

Elements of Architectural Structures ARCH 614

Modeling

- · can be modeled with a spring at mid-height
- when moment from deflection exceeds the spring capacity ... "boing"
- critical load P

Stability and Columns 15 Lecture 22 Elements of Architectural Structures ARCH 614 S2004abn

Buckling Load

- related to deflected shape (P∆)
- shape of sine wave
- Euler's Formula
- smallest I governs

Figure 9.3 Leonhard Euler (1707–1783).

S2004abn

Effect of Length

long & slender

· short & stubby

Stability and Columns 16 Lecture 22

Lecture 22

Elements of Architectural Structures ARCH 614 S2004abn

OPITICAL

Critical Stress

short columns

$$f_{critical} = \frac{P_{actual}}{A} < F_a$$

ARCH 614

- slenderness ratio = L_e/r (L/d)
- radius of gyration = $r = \sqrt{\frac{I}{A}}$

 $P_{critical} = \frac{\pi^2 EA}{\left(\frac{L_e}{r}\right)^2}$

weak axis

Stability and Columns 17 Lecture 22 Elements of Architectural Structures ARCH 614

Critical Stresses

- when a column gets stubby, F_v will limit the load for steel
- real world has loads with eccentricity

Stability and Columns 19 Lecture 22

Flements of Architectural Structures ARCH 614

S2004ahn

Bracing

- bracing affects shape of buckle in one direction
- both should be checked!

Stability and Columns 21 Lecture 22

Elements of Architectural Structures ARCH 614

Effective Length

- end conditions affect shape
- effective length factor, K

 $L_{e} = K \cdot L$

Stability and Columns 20 Lecture 22

Flements of Architectural Structures

S2004abn

Centric & Eccentric Loading

- centric
 - allowable stress from strength or buckling
- eccentric
 - combined stresses

Column Eccentricity 18 Lecture 23

Elements of Architectural Structures ARCH 614

Combined Stresses

- axial + bending

$$f_{\text{max}} = \frac{P}{A} + \frac{Mc}{I}$$
$$M = P \cdot e$$

- design

$$f_{\max} \le F_{cr} = \frac{f_{cr}}{F.S.}$$

Column Eccentricity 19 Lecture 23

Elements of Architectural Structures ARCH 614

S2004abn

Stress Limit Conditions

- in reality, as the column flexes, the moment increases
- P-∆ effect

$$\frac{f_a}{F_a} + \frac{f_b \times (Magnification \ factor)}{F_{bx}} \le 1.0$$

S2004ahn

ARCH 614

Stress Limit Conditions

ASD interaction formula

$$\frac{f_a}{F_a} + \frac{f_b}{F_b} \le 1.0$$

- with biaxial bending

$$\frac{f_a}{F_a} + \frac{f_{bx}}{F_{bx}} + \frac{f_{by}}{F_{by}} \le 1.0$$

interaction diagram

Column Eccentricity 22 Lecture 23

Elements of Architectural Structures ARCH 614

S2004abn

Rigid Frame Analysis

- members see
 - shear
 - axial force
 - bending
- V & M diagrams
 - plot on "outside"

Rigid Frames 17 Lecture 25

Elements of Architectural Structures ARCH 614

Rigid Frame Analysis

- need support reactions
- free body diagram each member
- end reactions are equal and opposite on next member
- "turn" member like beam
- draw V & M

Rigid Frames 18

Elements of Architectural Structures

S2004abn

Rigid Frame Design

- · columns in frames
 - ends can be "flexible"
 - stiffness affected by beams and column = EI/L

- for the joint
 - I_c is the column length of each column
 - Ib is the beam length of each beam
 - measured center to center

S2004abr

Rigid Frame Analysis

- FBD & M

· opposite end reactions at joints

S2004ahn

Rigid Frames 19 Elements of Architectural Structures Lecture 25 ARCH 614

Rigid Frame Design

• column effective length, k

Rigid Frames 24 Lecture 25

Elements of Architectural Structures ARCH 614

Tools - Multiframe

Tools - Multiframe

Tools - Multiframe

- frame window
 - define frame members
 - · or pre-defined frame
 - select points, assign supports
 - select members. assign section

- select point or member, add point or distributed loads

്⊞മ⊞ിമ∞ ⊿ി എസ

Rigid Frames 30 Lecture 11

Elements of Architectural Structures ARCH 614

S2008abn