ELEMENTS OF **A**RCHITECTURAL **S**TRUCTURES:

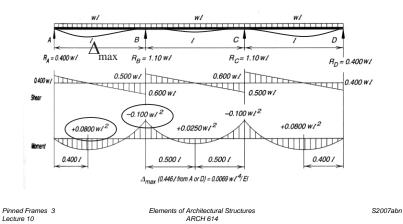
FORM, BEHAVIOR, AND DESIGN

ARCH 614

DR. ANNE NICHOLS

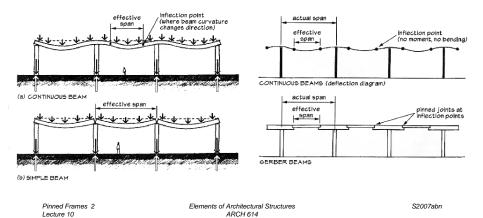
SPRING 2013

lecture ten

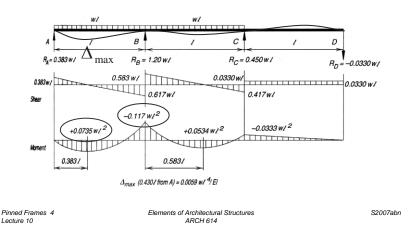


other beams & pinned frames

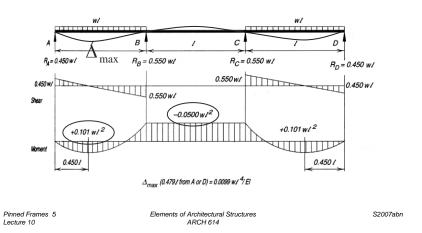
Pinned Frames Lecture 10 Elements of Architectural Structure ARCH 614 S2009abn


Continuous Beams

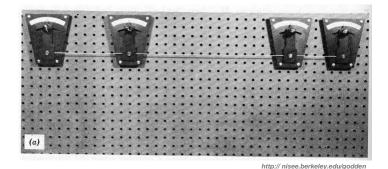
- loading pattern affects
 - moments & deflection


Continuous Beams

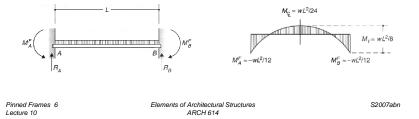
- statically indeterminate
- reduced moments than simple beam


Continuous Beams

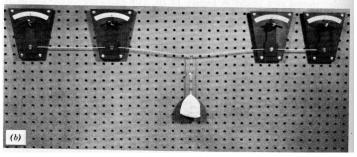
unload end span


Continuous Beams

unload middle span


Moment Distribution (a)

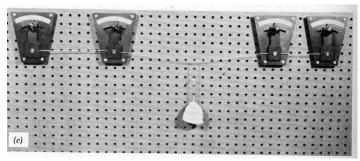
no load


Moment Redistribution

- continuous slabs & beams with uniform loading
 - joints similar to fixed ends, but can rotate
- change in moment to center = wL^2
 - $-M_{max}$ for simply supported beam 8

Moment Distribution (b)

add load

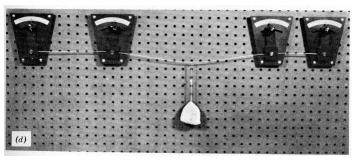

http:// nisee.berkeley.edu/godden

Pinned Frames 7 Lecture 10 Elements of Architectural Structures ARCH 614 S2007abn

Pinned Frames 8 Lecture 10 Elements of Architectural Structures ARCH 614 S2007abn

Moment Distribution Method (c)

• release joint 2

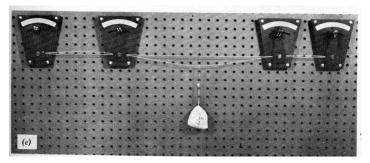


http:// nisee.berkeley.edu/godder

Pinned Frames 9 Lecture 10 Elements of Architectural Structures ARCH 614 S2007abn

Moment Distribution Method (d)

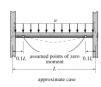
• release joint 3

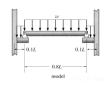


http:// nisee.berkeley.edu/godden

Pinned Frames 10 Lecture 10 Elements of Architectural Structures ARCH 614 S2007abn

Moment Distribution Method (e)


 exposure of final shape after cycles over initial shape



http:// nisee.berkeley.edu/godden

Analysis Methods

- Approximate Methods
 - location of inflection points
- Force Method
 - forces are unknowns
- Displacement Method
 - displacements are unknowns

Pinned Frames 11 Lecture 10 Elements of Architectural Structures

S2007abn

Pinned Frames 12 Lecture 10 Elements of Architectural Structures ARCH 614 S2007abn

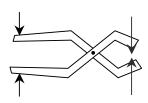
Theorem of Three Moments

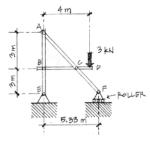
- moments at three adjacent supports (2 spans)
- distributed load and same I:

$$M_1L_1 + 2M_2(L_1 + L_2) + M_3L_2 = -\frac{w_1L_1^3}{4} - \frac{w_2L_2^3}{4}$$

• concentrated loads and same I:

$$M_{1}L_{1} + 2M_{2}(L_{1} + L_{2}) + M_{3}L_{2} = -\sum_{1} P_{1}L_{1}^{2}(n_{1} - n_{1}^{3}) - \sum_{1} P_{2}L_{2}^{2}(n_{2} - n_{2}^{3})$$

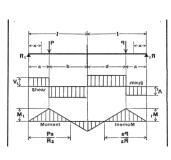

Pinned Frames 13

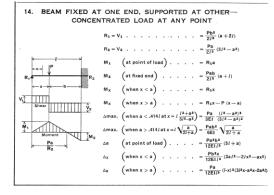

Elements of Architectural Structures ARCH 614 S2007abi

Pinned Frames

- structures with at least one 3 force body
- · connected with pins
- reactions are <u>equal and opposite</u>

rigid

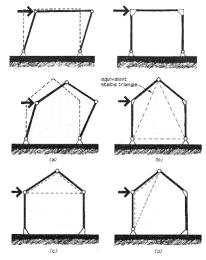




Pinned Frames 15 Lecture 10 Elements of Architectural Structures ARCH 614 S2007abn

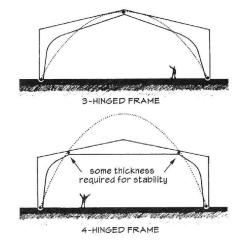
Two Span Beams & Charts

- · equal spans & symmetrical loading
- middle support as flat slope



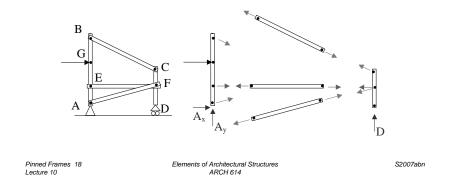
Pinned Frames 14 Lecture 10 Elements of Architectural Structures ARCH 614 S2007abn

Rigid Frames


- <u>rigid</u> frames have no pins
- frame is all one body
- typically statically indeterminate
- types
 - portal
 - gable

Pinned Frames 16 Lecture 10 Elements of Architectural Structures ARCH 614 S2007abn

Rigid Frames with PINS


- frame pieces with connecting pins
- not necessarily symmetrical

Pinned Frames 17 Lecture 10 Elements of Architectural Structures ARCH 614 S2007abn

Internal Pin Connections

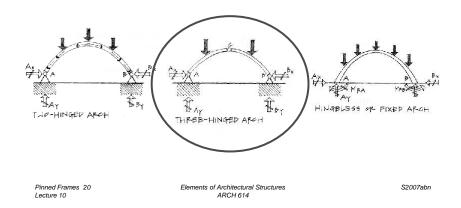
- statically determinant
 - 3 equations per body
 - 2 reactions per pin + support forces

Arches

Lecture 10

- ancient
- traditional shape to span long distances

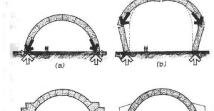
Rainbow Bridge National Monument


R

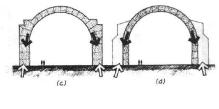
Elements of Architectural Structures ARCH 614

S2007abn

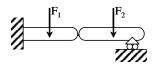
Arches

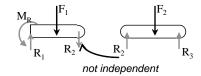

- primarily sees compression
- a brick "likes an arch"

Arches


behavior

- thrust related to height to width

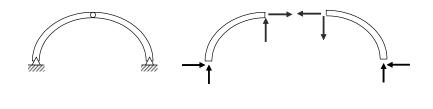

Pinned Frames 21 Lecture 10


Elements of Architectural Structures ARCH 614

S2007abn

Beams with Internal Pins

- statically determinant when
 - 3 equilibrium equations per link =>
 - total of support & pin reactions (properly constrained)
- zero moment at pins



Flements of Architectural Structures

S2007abn

Three-Hinged Arch

- statically determinant
 - 2 bodies, 6 equilibrium equations
 - 4 support, 2 pin reactions (= 6)

Pinned Frames 22 Lecture 10

Pinned Frames 24

Flements of Architectural Structures ARCH 614

S2007ahn

Procedure

- solve for all support forces you can
- draw a FBD of each member
 - pins are integral with member
 - pins with loads should belong to 3+ force bodies
 - pin forces are equal and opposite on connecting bodies
 - identify 2 force bodies vs. 3+ force bodies
 - use all equilibrium equations