ELEMENTS OF **A**RCHITECTURAL **S**TRUCTURES:

FORM, BEHAVIOR, AND DESIGN ARCH 614 DR. ANNE NICHOLS SPRING 2013

lecture SIX

beam introduction & internal forces

http:// nisee.berkeley.edu/godden

Internal Beam Forces 1 Lecture 6 Elements of Architectural Structures ARCH 614

Beams

- span horizontally
 - floors
 - bridges
 - roofs

- loaded transversely by gravity loads
- may have internal axial force
- <u>will have internal shear force</u>

• will have internal moment (bending)

Beams

- transverse loading
- sees:
 - bending
 - shear
 - deflection
 - torsion
 - bearing
- behavior depends on cross section shape

Elements of Architectural Structures ARCH 614

Beams

- bending
 - bowing of beam with loads
 - one edge surface stretches
 - other edge surface squishes

stress = relative force over an area

Tension

Original size

 (\pm)

- tensile
- compressive
- bending
 - tension and compression + ...

S2013

Compresssion (-)

Original size

Elements of Architectural Structures ARCH 614

- tension and compression
 - causes moments

Copyright © 1996-2000 Kirk Martini.

Elements of Architectural Structures ARCH 614

- prestress or post-tensioning
 - put stresses in tension area to "pre-compress"

Elements of Architectural Structures ARCH 614

shear – horizontal & vertical

Elements of Architectural Structures ARCH 614

shear – horizontal & vertical

Elements of Architectural Structures ARCH 614

• shear – horizontal

Beam Deflections

- depends on
 - load
 - section
 - material

Figure 5.4 Bending (flexural) loads on a beam.

Internal Beam Forces 12 Lecture 6 Elements of Architectural Structures ARCH 614

Beam Deflections

• "moment of inertia"

Internal Beam Forces 13 Lecture 6 Elements of Architectural Structures ARCH 614

Beam Styles

• vierendeel

- open web joists
- manufactured

Elements of Architectural Structures ARCH 614

Internal Forces

- trusses
 - axial only, (compression & tension)

in general

 axial force
 shear force, V
 bending moment, M

Internal Beam Forces 15 Lecture 6 Elements of Architectural Structures ARCH 614

Beam Loading

- concentrated force
- concentrated <u>moment</u>

– spandrel beams

Internal Beam Forces 16 Lecture 6 Elements of Architectural Structures ARCH 614

Beam Loading

- uniformly distributed load (line load)
- non-uniformly distributed load
 - hydrostatic pressure = γh
 - wind loads

(c) Nonuniformly distributed load.

Internal Beam Forces 17 Lecture 6 Elements of Architectural Structures ARCH 614

Beam Supports

statically determinate

statically indeterminate

Internal Beam Forces 18 Lecture 6 Elements of Architectural Structures ARCH 614

Beam Supports

• in the real world, modeled type

(c) Timber beam-column connection with T-plate.

Internal Beam Forces 19 Lecture 6 Elements of Architectural Structures ARCH 614

Internal Forces in Beams

- like method of sections / joints
 no axial forces
- section <u>must</u> be in equilibrium
- want to know where biggest internal forces and moments are for designing

Elements of Architectural Structures ARCH 614

V & M Diagrams

- tool to locate V_{max} and M_{max}
- <u>necessary</u> for designing
- M_{max} occurs when V = 0

Elements of Architectural Structures ARCH 614

Sign Convention

- shear force, V:
 - cut section to LEFT
 - if $\sum F_y$ is positive by statics, V acts down and is POSITIVE
 - beam has to resist shearing apart by V

Elements of Architectural Structures ARCH 614

Shear Sign Convention

(+) Shear.

Internal Beam Forces 23 Lecture 6 Elements of Architectural Structures ARCH 614

Sign Convention

- bending moment, M:
 - cut section to LEFT
 - if $\sum M_{cut}$ is clockwise, M acts ccw and is POSITIVE – flexes into a "smiley" beam has to resist bending apart by M

Elements of Architectural Structures ARCH 614

Bending Moment Sign Convention

Deflected Shape

- positive bending moment
 - tension in bottom, compression in top
- negative bending moment
 - tension in top, compression in bottom
- zero bending moment

 inflection point

Constructing V & M Diagrams

• along the beam length, plot V, plot M

Elements of Architectural Structures ARCH 614

Mathematical Method

- cut sections with x as width
- write functions of V(x) and M(x)

Elements of Architectural Structures ARCH 614

Equilibrium Method

- cut sections at important places
- *plot V & M*

Elements of Architectural Structures ARCH 614

Equilibrium Method

- important places
 - supports
 - concentrated loads
 - start and end of distributed loads
 - concentrated moments
- free ends
 - zero forces

Equilibrium Met

relationships

Figure 7.11 Relationship of load, shear, Element moment, slope, and deflection diagrams.

Internal Beam Forces 31 Lecture 6

Basic Procedure

- Find reaction forces & moments
 Plot axes, underneath beam load diagram
- **V**:
- 2. Starting at left
- 3. Shear is 0 at free ends
- 4. Shear has 2 values at point loads
- 5. Sum vertical forces at each section

Basic Procedure

M:

- 6. Starting at left
- 7. Moment is 0 at free ends
- 8. Moment has 2 values at moments
- 9. Sum moments at each section
- 10. Maximum moment is where shear = 0!

Shear Through Zero

slope of V is w (-w:1)

Elements of Architectural Structures ARCH 614

Tools

- software & spreadsheets help
- <u>http://www.rekenwonder.com/atlas.htm</u>

Elements of Architectural Structures ARCH 614

Tools – Multiframe

• in computer lab

Internal Beam Forces 36 Lecture 6

ARCH 614

Tools – Multiframe

- frame window
 - define beam members
 - select points, assign supports
 - select members, assign <u>section</u>
- load window
 - select point or member, add point or distributed loads

Internal Beam Forces 37 Lecture 6 Elements of Architectural Structures ARCH 614

Tools – Multiframe

- to run analysis choose
 Analyze menu
 - Linear
- plot
 - choose optionsdouble click (all)

5

AKCH 014

Elements

- results
 - choose options

