ELEMENTS OF **A**RCHITECTURAL **S**TRUCTURES: FORM, BEHAVIOR, AND DESIGN **ARCH 614** DR. ANNE NICHOLS Spring 2013 five five forces have the tendency to make a body rotate about an axis http://www.physics.umd.edu - same translation but different rotation • a force acting at a different point causes a different moment: - defined by magnitude and direction - units: N·m, k·ft - direction: - + CW (!) - CCW - value found from F and ⊥ distance $$M = F \cdot d$$ d also called "lever" or "moment" arm with same F: $$M_A = F \cdot d_1 < M_A = F \cdot d_2$$ (bigger) - additive with sign convention - can still move the force along the line of action - Varignon's Theorem - resolve a force into components at a point and finding perpendicular distances - calculate sum of moments - equivalent to original moment - makes life easier! - geometry - when component runs through point, d=0 #### Moments of a Force - moments of a force - introduced in Physics as "Torque Acting on a Particle" - and used to satisfy rotational equilibrium ## Physics and Moments of a Force my Physics book (right hand rule): **FIGURE 11-2** The plane shown is that defined by \mathbf{r} and \mathbf{F} in Fig. 11-1. (a) The magnitude of $\boldsymbol{\tau}$ is given by Fr_{\perp} (Eq. 11-2b) or by rF_{\perp} (Eq. 11-2c). (b) Reversing F reverses the direction of τ . (c) Reversing \mathbf{r} reverses the direction of $\boldsymbol{\tau}$. (d) Reversing \mathbf{F} and \mathbf{r} leaves the direction of $\boldsymbol{\tau}$ unchanged. The direction tions of τ are represented by \odot (perpendicularly out of the figure, the symbol representing the tip of an arrow) and by \(\otimes \) (perpendicularly into the figure, the symbol representing the tail of an arrow). **ARCH 614** #### 2 forces - same size - opposite direction - distance d apart - CW Or CCW $$M = F \cdot d$$ not dependant on point of application $$M = F \cdot d_1 - F \cdot d_2$$ - equivalent couples - same magnitude and direction - F & d may be different - added just like moments caused by one force - can <u>replace</u> two couples with a single couple ## moment couples in structures The flanges of a steel beam are welded to the flange of a column. Equal and opposite forces T and C in the beam flanges form a couple with moment M that is transferred into the column. ### Equivalent Force Systems - two forces at a point is equivalent to the resultant at a point - resultant is equivalent to two components at a point - resultant of equal & opposite forces at a point is zero - put equal & opposite forces at a point (sum to 0) - transmission of a force along action line ### Force-Moment Systems single force causing a moment can be replaced by the same force at a different point by providing the moment that force caused moments are shown as arched arrows ### Force-Moment Systems a force-moment pair can be replaced by a force at another point causing the original moment ARCH 614 ### Parallel Force Systems - forces are in the same direction - can find resultant force - need to find <u>location</u> for equivalent moments ### **Equilibrium** - rigid body - doesn't deform - coplanar force systems - static: $$R_x = \sum F_x = 0_{(\Sigma H)}$$ $$R_{y} = \sum F_{y} = 0_{(\Sigma V)}$$ $$M = \sum M = 0$$ - FBD (sketch) - tool to see all forces on a body or a point including - external forces - weights - force reactions - external moments - moment reactions - internal forces - determine body - FREE it from: - ground - supports & connections - draw all external forces acting ON the body - reactions - applied forces - gravity - sketch FBD with relevant geometry - resolve each force into components - known & unknown angles name them - known & unknown <u>forces</u> <u>name</u> them - known & unknown moments name them - are any forces related to other forces? - for the unknowns - write only as many equilibrium equations as needed - solve up to 3 equations - solve equations - most times 1 unknown easily solved - plug into other equation(s) - common to have unknowns of - force magnitudes - force angles - moment magnitudes ## Reactions on Rigid Bodies - result of applying force - unknown size - connection or support type - known direction - related to motion prevented ## Supports and Connections ## Supports and Connections ### Moment Equations - sum moments at intersection where the most forces intersect - multiple moment equations may not be useful - combos: $$\sum F_{x} = 0 \qquad \sum F = 0 \qquad \sum M_{1} = 0$$ $$\sum F_{y} = 0 \qquad \sum M_{1} = 0 \qquad \sum M_{2} = 0$$ $$\sum M_{1} = 0 \qquad \sum M_{2} = 0 \qquad \sum M_{3} = 0$$ ## Concentrated Loads ## Distributed Loads ## Beam Supports statically determinate statically indeterminate ## Equivalent Force Systems - replace forces by resultant - place resultant where M = 0 - using <u>calculus</u> and area centroids $$W = \int_0^L w dx = \int dA_{loading} = A_{loading}$$ #### Load Areas - area is width x "height" of load - <u>w</u> is load per unit length - W is total load