ELEMENTS OF **A**RCHITECTURAL **S**TRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 614

DR. ANNE NICHOLS
Spring 2013

three

equilibrium and planar trusses

Equilibrium

- balanced
- steady
- resultant of forces on a particle is 0

Equilibrium on a Point

analytically

$$R_x = \sum F_x = 0$$

$$R_{y} = \sum F_{y} = 0$$

http://www.physics.umd.edu

Newton convinces us it will stay at rest

Equilibrium on a Point

- collinear force system
 - ex: cables

$$\sum F_{in-line} = 0$$

$$\left(R_{x}=\sum F_{x}=0\right)$$

$$R_{y} = \sum F_{y} = 0$$

Equilibrium on a Point

concurrent force system

- ex: cables

$$R_x = \sum F_x = 0$$

$$R_y = \sum F_y = 0$$

- FBD (sketch)
- tool to see all forces on a body or a point including
 - external forces
 - weights
 - force reactions
 - internal forces

- determine point
- FREE it from:
 - ground
 - supports & connections
- draw all external forces acting ON the body
 - reactions(supporting forces)
 - applied forces
 - gravity

- sketch FBD with relevant geometry
- resolve each force into components
 - known & unknown angles name them
 - known & unknown forces name them
- are any forces related to other forces?
- for the unknowns
- write only as many equilibrium equations as needed
- solve up to 2 equations

- solve equations
 - most times 1 unknown easily solved
 - plug into other equation(s)

- common to have unknowns of
 - force magnitudes
 - force angles

Force Reactions

- result of applying force
- unknown size
- connection or support type
 - known direction
 - related to motion prevented

Friction

- resistance to movement
- contact surfaces determine μ
- proportion of normal force (∠)
 - opposite to slide direction
 - static > kinetic

$$F = \mu N$$

Cable Reactions

- equilibrium:
 - more reactions (4) than equations
 - but, we have slope relationships
 - x component the same everywhere

Cable-Stayed Structures

- diagonal cables support horizontal spans
- typically symmetrical
- Patcenter, Rogers 1986

Patcenter, Rogers 1986

- column free space
- roof suspended
- solid steel ties
- steel frame supports masts

Patcenter, Rogers 1986

dashes – cables pulling

- ancient (?) wood
 - Romans 500 B.C.
- Renaissance revival
- 1800's analysis
- efficient

analogous to cables and struts

comprised of straight members

geometry with triangles is stable

loads applied only at pin joints

- 2 force members
 - forces in line, equal and opposite
 - compression
 - tension

- 3 members connected by 3 joints
- 2 more members need 1 more joint b = 2n - 3

compression and tension

- statically determinate
- indeterminate
- unstable

$$b = 21$$

$$n = 12$$
 $2(n) - 3 = 2(12) - 3 = 21$

$$b = 16$$

n = 10 b = 16 < 2(10) - 3 = 17(Too few members—square panel is unstable)

(c) Unstable.

$$b = 18$$

(b) Indeterminate.

$$n = 10$$
 $b = 18 > 2(10) - 3 = 17$ (Too many members)

Trusses

common designs

Trusses

common designs

Trusses

- uses
 - roofs & canopies
 - long spans
 - lateral bracing

Truss Connections

"pins"

Figure 4.8: Truss joints.

http://nisee.berkeley.edu/godden

Sainsbury Center, Foster 1978

Equilibrium 26 Lecture 3

Elements of Architectural Structures ARCH 614

Sainsbury Center, Foster 1978

Truss Analysis

 visualize compression and tension from deformed shape

Truss Analysis

- Method of Joints
- Graphical Methods
- Method of Sections

- all rely on equilibrium
 - of bodies
 - internal equilibrium

Method of Joints

- isolate each joint
- enforce
 equilibrium in
 F_x and F_y
- can find all forces

- long
- easy to mess up

Joint Cases

two bodies connected

Joint Cases

three bodies with two in line

Joint Cases

crossed

Tools - Multiframe

in computer lab

Tools - Multiframe

- frame window
 - define truss members
 - or pre-defined truss
 - select points, assign supports
 - select members,assign <u>section</u> &assign <u>pin ends</u>
- load window
 - select points,add point load

▲ ▦ മ ∞

Tools – Multiframe

to run analysis choose

- Analyze menu
 - Linear
- plot
 - choose options
- results
 - choose options

Analyse

Linear

Nonlinear...
Buckling...
Modal...

Time history...

Time

Window Help