ELEMENTS OF **A**RCHITECTURAL **S**TRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 614

DR. ANNE NICHOLS

SPRING 2013

lecture tVVO

loads, forces and vectors

Structural Design

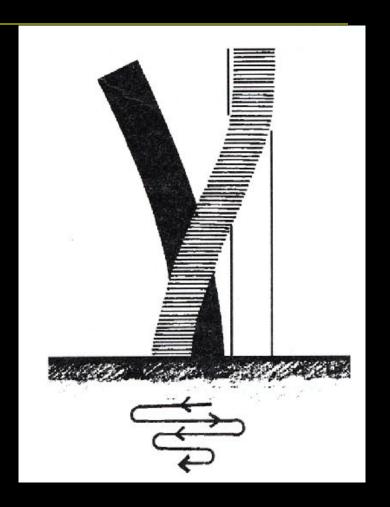
- planning
- preliminary structural configuration
- determination of loads
- preliminary member selection
- analysis
- evaluation
- design revision
- final design

- STATIC and DYNAMIC
- dead load
 - static, fixed, includes building weight, fixed equipment
- live load
 - transient and moving loads (including occupants), snowfall

Figure 1.12 Typical building loads.

wind loads

 dynamic, wind pressures treated as lateral static loads on walls, up or down loads on


roofs

- earthquake loads
 - seismic, movement of ground ↓

- impact loads
 - rapid, energy loads

Forces

- statics
 - physics of <u>forces</u> and reactions on bodies and systems
 - equilibrium (bodies at rest)
- forces
 - something that exerts on an object:
 - motion
 - tension
 - compression

Forces

- "action of one body on another that affects the state of motion or rest of the body"
- Newton's 3rd law:
 - for every force of action there is an equal and opposite reaction along the same line

http://www.physics.umd.edu

Force Vectors

- applied at a point
- magnitude
 - Imperial units: lb, k (kips)
 - SI units: N (newtons), kN
- direction
- sense

Forces on Rigid Bodies

- for statics, the bodies are ideally rigid
- can translate and rotate

- internal forces are
 - in bodies
 - between bodies (connections)
- external forces act on bodies

Transmissibility

- the force stays on the same line of action
- truck can't tell the difference

only valid for EXTERNAL forces

Force System Types

collinear

Force System Types

coplanar

Coplanar—All forces acting in the same plane.

Figure 2.17(b) Rigid bodies.

Forces in a buttress system.

Coplanar, parallel—All forces are parallel and act in the same plane.

Figure 2.17(c) Rigid bodies.

A beam supported by a series of columns.

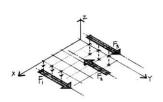
Loads applied to a roof truss.

Coplanar, concurrent—All forces intersect at a common point and lie in the same plane.

Figure 2.17(d) Particle or rigid body.

Force System Types

space


Column loads in a concrete building.

One component of a three-dimensional space frame.

Array of forces acting simultaneously on a house.

Noncoplanar, parallel—All forces are parallel to each other, but not all lie in the same plane.

Figure 2.17(e) Rigid bodies.

Noncoplanar, concurrent—All forces intersect at a common point but do not all lie in the same plane.

Figure 2.17(f) Particle or rigid bodies.

Noncoplanar, nonconcurrent—All forces are skewed. Figure 2.17(g) Rigid bodies.

Adding Vectors

- graphically
 - parallelogram law
 - diagonal
 - long for 3 or more vectors

- tip-to-tail
 - more convenient with lots of vectors

Force Components

- convenient to resolve into 2 vectors
- at right angles
- in a "nice" coordinate system
- θ is between F_x and F from F_x

$$F_{x} = F \cos \theta$$

$$F_{y} = F \sin \theta$$

$$F = \sqrt{F_{x}^{2} + F_{y}^{2}}$$

$$F$$

 $\tan \theta$

Trigonometry

- F_x is negative
 - -90° to 270°
- F_y is negative
 - *− 180*° to 360°
- tan is positive
 - quads I & III
- tan is negative
 - quads II & IV

Component Addition

- find all x components
- find all y components
- find sum of x components, R_x (resultant)
- find sum of y components, R_y

$$R = \sqrt{R_x^2 + R_y^2}$$

$$\tan \theta = \frac{R_y}{R_x}$$

Alternative Trig for Components

- doesn't relate angle to axis direction
- φ is "small" angle between F and <u>EITHER F_x or F_y</u>
- no sign out of calculator!
- have to choose RIGHT trig function, resulting direction (sign) and component axis

Static Equilibrium

- balanced & steady
- no motion or translation
- equilibrant opposite resultant

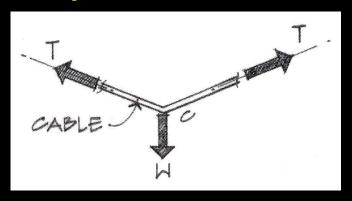
Cables

- simple
- uses
 - suspension bridges
 - roof structures
 - transmission lines
 - guy wires, etc.

http://nisee.berkeley.ed/ugodden

- have same tension all along
- can't stand compression

Cables Structures


- use high-strength steel
- need
 - towers
 - anchors
- don't want movement

http://nisee.berkeley.edu/godden

Cable Loads

- straight line between forces
- with one force
 - concurrent
 - symmetric

(a) Simple concentrated load—triangle.

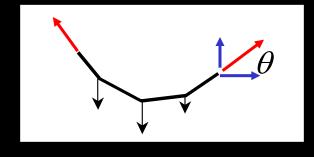
(b) Several concentrated loads—polygon.

Cable Loads

 shape directly related to the distributed load

(e) Comparison of a parabolic and a catenary curve.

(ε) Uniform loads (horizontally)—parabola.



(d) Uniform loads (along the cable length)—catenary.

Cable Loads

• trig:
$$T_x = T \cos \theta$$

 $T_y = T \sin \theta$

- parabolic (catenary)
 - distributed uniform load

$$y = 4h(Lx - x^{2})/L^{2}$$

$$L_{total} = L(1 + \frac{8}{3}h^{2}/L^{2} - \frac{32}{5}h^{4}/L^{4})$$

