Elements of Architectural Structures: Form, Behavior, and Design

ARCH 614

DR. ANNE NICHOLS
Spring 2013

fourteen

wood construction: column design

Compression Members (revisited)

- designed for strength & stresses
- designed for serviceability & deflection
- need to design for <u>stability</u>
 - ability to support a specified load without sudden or unacceptable deformations

Effect of Length (revisited)

long & slender

short & stubby

Critical Stresses (revisited)

- when a column gets stubby, crushing will limit the load
- real world has loads with eccentricity

Bracing (revisited)

- bracing affects shape of buckle in one direction
- both should be checked!

Wood Columns

- slenderness ratio = $L/d_{min} = L/d_1$
 - $-d_1 = smaller dimension$
 - $-\ell_e/d \leq 50$ (max)

$$f_c = \frac{P}{A} \le F_c'$$

- where F_c^\prime is the allowable compressive strength parallel to the grain
- bracing common

Allowable Wood Stress

$$F_c' = F_c(C_D)(C_M)(C_t)(C_F)(C_p)$$
where:

 $F_c = compressive strength$ parallel to grain

 C_D = load duration factor

 C_M = wet service factor (1.0 dry)

 C_t = temperature factor

 $C_F = size factor$

 $C_p = column stability factor$

(Table 5.2)

$$= f^{\left(F_{cE}/_{F_c^*}\right)}$$

Strength Factors

- wood properties and load duration, C_D
 - short duration
 - higher loads
 - normal duration
 - > 10 years

http://www.swst.org/teach/set2/struct1.html

- stability, C_p
 - combination curve tables

$$F_c' = F_c^* C_p = (F_c C_D) C_p$$

C_p Charts

Column Stability Factor Cp

 $F_{CE} = C_{p} \cdot F_{c}$ $F_{CE} = \frac{30 \text{ E}}{(134)^{2}} \text{ for sawn posts}$ $F_{CE} = \frac{418 \text{ E}}{(134)^{2}} \text{ for Glu-Lam posts}$ $F_{CE} = Sawn \quad Glu-Lam \quad F_{CE} \quad F_{CE} \quad Sawn \quad Glu-Lam \quad F_{CE} \quad$

C_p 0.822 0.826 0.831 0.836 0.840 0.844 0.848 0.852 0.855

0.862 0.865 0.868 0.871 0.874 0.879 0.882 0.884 0.887

			-					
F _{CE} Fc	Sawn C _p	Glu-Lam ($\frac{F_{CE}}{F_C^2}$	Sawn C _p	Glu-Lam C _p	For Fé	Sawn C _p	
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09	0.000 0.010 0.020 0.030 0.040 0.049 0.059 0.069 0.079	0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.069 0.079 0.089	0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69	0.500 0.506 0.512 0.518 0.524 0.530 0.536 0.542 0.548 0.553	0.538 0.545 0.552 0.559 0.566 0.573 0.580 0.587 0.593 0.600	1,20 1,22 1,24 1,26 1,28 1,30 1,32 1,34 1,36 1,38	0.750 0.755 0.760 0.764 0.769 0.773 0.777 0.781 0.785 0.789	
0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19	0.098 0.107 0.117 0.126 0.136 0.145 0.154 0.164 0.173 0.182	0.099 0.109 0.118 0.128 0.136 0.147 0.157 0.167 0.167 0.176	0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79	0.559 0.564 0.569 0.575 0.580 0.585 0.590 0.595 0.600 0.605	0.607 0.513 0.619 0.626 0.632 0.638 0.644 0.650 0.655 0.661	1.40 1.42 1.44 1.46 1.50 1.52 1.54 1.56 1.58	0.793 0.796 0.800 0.803 0.807 0.810 0.813 0.816 0.819	

_		200			
	F _{CE}	Sawii C _p	Glu-Lam C _e		
	2.40	0.894	0.940		
	2.45	0.897	0.941		
- 1	2.50	0.899			
- 1	2.55	0.901	0.944		
- 1	2.60	0.904	0.946		
- 1	2.65	0.906	0.947		
	2.70	0.908			
- 1	2.75	0.910			
- 1	2.80	0.912			
- 1	2.85	0.914	0.952		
	2.90	0.916	0.953		
- 1	2.95	0.917	0.954		
- 1	3.00	0.919	0.955		
- 1	3.05	0.920	0.956		
	3.10	0.922			
- 1	3.15	0.923	0.958		
- 1	3.20	0.925			
	3.25	0.926	0.960		
- 1	3.35	0.929	0.961		
		0.04.0	-,,		

Procedure for Analysis

- 1. calculate L_e/d_{min}
 - KL/d each axis, choose largest
- 2. obtain F'_{c} compute $F_{cE} = \frac{K_{cE}E}{\binom{L_e}{d}^2}$ K_{cE} =0.3 sawn
 - $K_{cE} = 0.418 \text{ glu-lam}$
- 3. compute $F_c^* \approx F_c C_D$
- 4. calculate F_{cE}/F_c^* and get C_p (chart)
- 5. calculate $F_c' = F_c^* C_p$

Procedure for Analysis (cont'd)

- 6. compute $P_{allowable} = F'_c \cdot A$
 - or find $f_{actual} = P/A$
- 7. is $P \le P_{allowable}$? (or $f_{actual} \le F'_{c}$?)
 - yes: OK
 - no: overstressed & no good

Procedure for Design

- 1. guess a size (pick a section)
- 2. calculate L_e/d_{min}
 - KL/d each axis, choose largest
- 3. obtain F'_{c} compute $F_{cE} = \frac{K_{cE}E}{\binom{L_{e}}{d}^{2}}$ $K_{cE} = 0.3 \text{ sawn}$
 - $K_{cE} = 0.418 \text{ glu-lam}$
- 4. compute $F_c^* \approx F_c C_D$
- 5. calculate F_{cE}/F_c^* and get C_p (chart)

Procedure for Design (cont'd)

- 6. calculate $F'_c = F_c^* C_p$
- 7. compute $P_{allowable} = F'_c \cdot A$
 - or find $f_{actual} = P/A$
- 8. is $P \le P_{allowable}$? (or $f_{actual} \le F'_{c}$?)
 - yes: OK
 - no: pick a bigger section and go back to step 2.

Specific Column Charts

Column Section		Unbraced Length (ft)										
Nominal Size	Area (in.²)	6	8	10	12	14	16	18	20	22	24	26
4 × 4	12.25	11.1	7.28	4.94	3.50	2.63						
4×6	19.25	17.4	11.4	7.76	5.51	4.14						
4×8	25.375	22.9	15.1	10.2	7.26	6.46						
6×6	30.25	27.6	24.8	20.9	16.9	13.4	10.7	8.71	7.17	6.53		
6×8	41.25	37.6	33.9	28.5	23.1	18.3	14.6	11.9	9.78	8.91		
6×10	52.25	47.6	43.0	36.1	29.2	23.1	18.5	15.0	13.4	11.3		
8×8	56.25	54.0	51.5	48.1	43.5	38.0	32.3	27.4	23.1	19.7	16.9	14.6
8×10	71.25	68.4	65.3	61.0	55.1	48.1	41.0	34.7	29.3	24.9	21.4	18.4
8×12	86.25	82.8	79.0	73.8	66.7	58.2	49.6	42.0	35.4	30.2	26.0	22.3
10×10	90.25	88.4	85.9	83.0	79.0	73.6	67.0	60.0	52.9	46.4	40.4	35.5
10×12	109.25	107	104	100	95.6	89.1	81.2	72.6	64.0	56.1	48.9	42.9
10×14	128.25	126	122	118	112	105	95.3	85.3	75.1	65.9	57.5	50.4
12×12	132.25	130	128	125	122	117	111	104	95.6	86.9	78.3	70.2
14×14	182.25	180	178	176	172	168	163	156	148	139	129	119
16×16	240.25	238	236	234	230	226	222	216	208	200	190	179

^a Load capacity in kips for solid-sawn sections of No. 1 grade Douglas fir-larch with no adjustment for moisture or load duration conditions.

Timber Construction by Code

- light-frame
 - light loads
 - -2x's
 - floor joists 2x6, 2x8,
 2x10, 2x12 typical at
 spacings of 12", 16", 24"

- normal spans of 20-25 ft or 6-7.5 m
- plywood spans between joists
- <u>stud</u> or load-bearing masonry walls
- limited to around 3 stories fire safety

Design of Columns with Bending

- satisfy
 - strength
 - stability
- pick
 - section

(a) Framed beam (shear) connection. e = Eccentricity; $M = P \times e$

(c) Timber beam-column connection. $e = d/2 = eccentricity; M = P \times e$

(b) Moment connection (rigid frame). M = Moment due to beam bending

(d) Upper chord of a truss—compression plus bending. $\mathbf{M} = \frac{\omega \ell^2}{2}$

Design

Wood

$$\left[\frac{f_c}{F_c'}\right]^2 + \frac{f_{bx}}{F_{bx}'} \le 1.0$$

[] $term - magnification factor for P-\Delta$ $F'_{bx} - allowable bending strength$

Design Steps Knowing Loads

- 1. assume limiting stress
 - buckling, axial stress, combined stress
- 2. solve for r, A or S
- 3. pick trial section
- 4. analyze stresses
- 5. section ok?
- 6. stop when section is ok

