ELEMENTS OF **A**RCHITECTURAL **S**TRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 614

DR. ANNE NICHOLS

SPRING 2013

lecture eleven

rigid frames:
compression & bucklin

- <u>rigid</u> frames have no pins
- frame is all one body
- joints transfer moments and shear
- typically statically indeterminate
- types
 - portal
 - gable

behavior

- moments get redistributed
- deflections are smaller
- effective column lengths are shorter
- very sensitive to settling

- resists lateral loadings
- shape depends on stiffness of beams and columns
- 90° maintained

beams and columns when a building frame is subjected to lateral loads.

- staggered truss
 - rigidity
 - clear stories

- connections
 - steel
 - concrete

http://nisee.berkeley.edu/godden

Braced Frames

- pin connections
- bracing to prevent lateral movements

Braced Frames

- types of bracing
 - knee-bracing
 - diagonal
 - -X
 - K or chevron
 - shear walls

Shear Walls

resist lateral load in plane with wall

Compression Members

- designed for strength & stresses
- designed for serviceability & deflection
- need to design for <u>stability</u>
 - ability to support a specified load without sudden or unacceptable deformations

Column Buckling

- axially loaded columns
- long & slender
 - unstable equilibrium = buckling
 - sudden and not good

Modeling

- can be modeled with a spring at mid-height
- when moment from deflection exceeds the spring capacity ... "boing"
- critical load P

Effect of Length

long & slender

short & stubby

Buckling Load

- related to deflected shape (P∆)
- shape of sine wave
- Euler's Formula
- smallest I governs

$$P_{critical} = \frac{\pi^2 EI}{\left(L\right)^2}$$

Critical Stress

short columns

$$f_{critical} = rac{P_{actual}}{A} < F_{a}$$

ARCH 614

- slenderness ratio = L_e/r (L/d)
- radius of gyration = $r = \sqrt{\frac{I}{A}}$

weak axis

$$f_{critical} = \frac{P_{critical}}{A} = \frac{\pi^2 E A r^2}{A(L_e)^2} = \frac{\pi^2 E}{L_e r^2}$$
Rigid Frames 16

Elements of Architectural Structures

$$P_{critical} = rac{\pi^2 EA}{\left(rac{L_e}{r}
ight)^2}$$

Critical Stresses

- when a column gets stubby, F_y will limit the load for steel
- real world has loads with eccentricity

Effective Length

- end conditions affect shape
- effective length factor, K $L_e = K \cdot L$

Bracing

- bracing affects shape of buckle in one direction
- both should be checked!

Centric & Eccentric Loading

- centric
 - allowable stress from strength or buckling
- eccentric
 - combined stresses

Combined Stresses

– axial + bending

$$f_{\text{max}} = \frac{P}{A} + \frac{Mc}{I}$$
$$M = P \cdot e$$

- design

$$f_{\max} \leq F_{cr} = \frac{f_{cr}}{F.S.}$$

Stress Limit Conditions

ASD interaction formula

$$\frac{f_a}{F_a} + \frac{f_b}{F_b} \le 1.0$$

- with biaxial bending

$$\frac{f_a}{F_a} + \frac{f_{bx}}{F_{bx}} + \frac{f_{by}}{F_{by}} \le 1.0$$

interaction diagram

Stress Limit Conditions

in reality, as the column flexes,
 the moment increases

– *P-∆ effect*

$$\frac{f_a}{F_a} + \frac{f_b \times (Magnification \ factor)}{F_{bx}} \le 1.0$$

Rigid Frame Analysis

- members see
 - shear
 - axial force
 - bending
- V & M diagrams
 - plot on "outside"

Rigid Frame Analysis

- need support reactions
- free body diagram each member

- end reactions are equal and opposite on

next member

- "turn" memberlike beam

- draw V & M

Rigid Frame Analysis

- FBD & M

 opposite end reactions at joints

Rigid Frame Design

- columns in frames
 - ends can be "flexible"
 - stiffness affected by beams and column = El/L

$$G=\mathcal{\Psi}=rac{\sum EI/l_c}{\sum EI/l_b}$$
 – for the joint

- *l_c* is the column length of each column
- *I_b* is the beam length of each beam
- measured center to center

Rigid Frame Design

column effective length, k

Tools - Multiframe

 in computer lab 🔏 Plot 10 | My W Px 5 | ↑ 5 | My W II 🤏 Frame ₩ 3 ○用為囲四∞ | 4 / | 935.239 lbf-ft / N | 🗗 🔄 🔛 🖭 🗎 🔒 🖼 Sections W44x198 0.000 lbf-ft 🤏 Load View x=3.355 y=3.849 z=0.000 dx=-0.296 dy=0.099 dz=0.000 Sections W44x198 Rigid Frames 29 View Load Case 1 Lecture 11 **AKCH 614**

Tools – Multiframe

- frame window
 - define frame members
 - or pre-defined frame
 - select points, assign supports
 - select members,assign <u>section</u>
 - load window
 - select point or member, add point or distributed loads

Tools - Multiframe

Rigid Frames 31 Lecture 11

ARCH 614