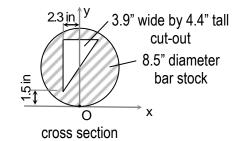
## **ARCH 614: Practice Quiz 4**


Note: No aids are allowed for part 1. One side of a letter sized paper with notes is allowed during part 2, along with a silent, **non-programm**able calculator. There is a reference chart for part 2 on page 2.

Clearly show your work and answer.

Part 1) Worth 5 points (conceptual questions)

Part 2) Worth 45 points

(NOTE: The units, dimensions, and basic shapes <u>can and will</u> be changed for the quiz! The shape will most likely consist of a solid with a hole of some type.)



A beam has a maximum shear of V = 3.2 k, and maximum bending moment of M = 56 k-ft. If the beam has the cross section shape and reference origin as shown to the right, find:

- a) The location of the centroid of the shape (vertically and horizontally).
- b) The moment of inertia about the x axis,  $I_x$ , of the section [or about the y axis,  $I_y$ ].
- c) The maximum bending stress,  $f_b$ , about the x axis for the section [if  $I_x$  is determined in part b) or is given as 246.68 in.<sup>4</sup>].

|       | A (in²) | $\bar{x}$ (in) | $\bar{x}A$ (in <sup>2</sup> ) | $\overline{y}$ (in) | $\overline{y}A$ (in) | $I_x$ (in <sup>4</sup> ) | d <sub>y</sub> (in) | $Ad_{y}^{2}$ (in <sup>3</sup> ) |
|-------|---------|----------------|-------------------------------|---------------------|----------------------|--------------------------|---------------------|---------------------------------|
| solid |         |                |                               |                     |                      |                          |                     |                                 |
|       |         |                |                               |                     |                      |                          |                     |                                 |
| hole  |         |                |                               |                     |                      |                          |                     |                                 |

Answers – Not provided on actual quiz!

- a)  $\hat{x} = 0.18 \text{ in}, \hat{y} = 4.22 \text{ in}$
- b)  $I_x = 246.68 \text{ in}^4 [\text{or } I_v = 238.88 \text{ in}^4]$
- c)  $f_b = 11.7 \text{ ksi}$

## **REFERENCE CHART FOR QUIZ 4**

## Geometric Properties of Areas

| Rectangle               | $ \begin{array}{c c} y & y' \\ h & C & x' \\ \hline  & b & x \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\bar{I}_{x'} = \frac{1}{12}bh^{3}$ $\bar{I}_{y'} = \frac{1}{12}b^{3}h$ $I_{x} = \frac{1}{3}bh^{3}  about$ $I_{y} = \frac{1}{3}b^{3}h  bottom$ $I_{y} = \frac{1}{12}bh(b^{2} + h^{2})$ | Area = bh $\overline{x}$ = b/2 $\overline{y}$ = h/2                                                     |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Triangle $\overline{x}$ | $ \begin{array}{c c} h & C \\ \hline  & \frac{h}{3} \\  & x \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\bar{I}_{x'} = \frac{1}{36}bh^{3}$ $I_{x} = \frac{1}{12}bh^{3}$ $\bar{I}_{y'} = \frac{1}{36}b^{3}h$                                                                                   | Area = $bh/2$ $\overline{x} = b/3$ $\overline{y} = h/3$                                                 |
| Circle                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ar{I}_x = ar{I}_y = rac{1}{4}\pi r^4$ $J_O = rac{1}{2}\pi r^4$                                                                                                                      | Area = $\pi r^2 = \pi d^2 / 4$ $\frac{\overline{x}}{\overline{y}} = 0$                                  |
| Semicircle              | $ \begin{array}{c c}  & y \\ \hline  & C \\  & C \\  & C \\  & C \\  & C \\ $ | $\bar{I}_x = 0.1098 r^4$ $\bar{I}_y = \pi r^4 / 8$                                                                                                                                     | Area = $\pi r^2 /_2 = \pi d^2 /_8$ $\bar{x} = 0 \qquad \bar{y} = 4r /_{3\pi}$                           |
| Quarter circle          | $ \begin{array}{c c} y \\ \hline O \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\overline{I}_x = 0.0549 r^4$ $\overline{I}_y = 0.0549 r^4$                                                                                                                            | Area = $\pi r^2 /_4 = \pi d^2 /_{16}$ $\overline{x} = \frac{4r}{3\pi}$ $\overline{y} = \frac{4r}{3\pi}$ |
| Ellipse                 | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $egin{aligned} ar{I}_x &= rac{1}{4}\pi a b^3 \ ar{I}_y &= rac{1}{4}\pi a^3 b \ J_O &= rac{1}{4}\pi a b (a^2 + b^2) \end{aligned}$                                                   | Area = $\pi ab$ $ \overline{x} = 0 $ $ \overline{y} = 0 $                                               |
| Semiparabolic<br>area   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ar{I}_{x}$ = 16ah $^{3}/$ 175                                                                                                                                                         | Area = $\frac{4ah}{3}$                                                                                  |
| Parabolic area          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\overline{I}_y$ = 4a $^3$ h $/$ 15                                                                                                                                                    | $\overline{x} = 0$ $\overline{y} = 3h/5$                                                                |
| Parabolic span-<br>drel | $y = kx^{2}$ $\bar{y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\overline{I}_x$ = 37ah $^3/2$ 100 $\overline{I}_y$ = a $^3$ h $/8$ 0                                                                                                                  | Area = $\frac{ah}{3}$ $\bar{x} = \frac{3a}{4} \qquad \bar{y} = \frac{3h}{10}$                           |