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Beam Stresses — Bending and Shear

Notation:

A name for area

Awer = area of the web of a wide flange
section
b = width of a rectangle
= total width of material at a
horizontal section
c = largest distance from the neutral
axis to the top or bottom edge of a
beam
d = calculus symbol for differentiation
= depth of a wide flange section
dy = difference in the y direction
between an area centroid (y) and
the centroid of the composite shape
(¥)
E = modulus of elasticity or Young’s
modulus
fo = bending stress
fc = compressive stress
fnax = mMaximum stress
fi = tensile stress
fy = shear stress
F, = allowable bending stress
Feonnector = Shear force capacity per
connector
h = height of a rectangle
I = moment of inertia with respect to
neutral axis bending
Ix = moment of inertia with respect to
an x-axis
L = name for length
M = internal bending moment
= name for a moment vector
n = number of connectors across a joint
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shorthand for neutral axis (N.A.)
name for reference origin

pitch of connector spacing

name for a force vector

shear per length (shear flow)
first moment area about a neutral
axis

Qconnected = first moment area about a neutral
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axis for the connected part

radius of curvature of a deformed
beam

section modulus

section modulus required at
allowable stress

thickness of web of wide flange
internal shear force

Viongitudinal = longitudinal shear force
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transverse shear force

name for distributed load
horizontal distance

vertical distance

the distance in the y direction from
a reference axis (n.a) to the centroid
of a shape

the distance in the y direction from
a reference axis to the centroid of a
composite shape

calculus symbol for small quantity
elongation or length change

strain

arc angle

summation symbol

Pure Bending in Beams

With bending moments along the axis of the member only, a beam is C

said to be in pure bending.

M’
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Normal stresses due to bending can be found for y
homogeneous materials having a plane of symmetry
in the y axis that follow Hooke’s law.

Maximum Moment and Stress Distribution

In a member of constant cross section, the maximum bending moment will govern the design of
the section size when we know what kind of normal stress is caused by it.

For internal equilibrium to be maintained, the bending moment will be equal to the 2M from the
normal stresses x the areas x the moment arms. Geometric fit helps solve this statically
indeterminate problem:

1. The normal planes remain normal for pure bending.
2. There is no net internal axial force.
3. Stress varies linearly over cross section.
4. Zero stress exists at the centroid and the line of centroids is the neutral axis (n. a)
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Figure 8.5(a)  Beam elevation before loading. Beam cross section.
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Figure 8.5(0)  Beam |'i'{!'n.'.f.l:ir3 irnder dod. Figure 8.8 Bewding stresses on section b-b.
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Relations for Beam Geometry and Stress

Pure bending results in a circular arc deflection. R is the distance
to the center of the arc; 0 is the angle of the arc (radians); c is the
distance from the n.a. to the extreme fiber; fmax is the maximum
normal stress at the extreme fiber; y is a distance in y from the

n.a.; M is the bending moment; | is the moment of in 6 zertia; S is
the section modulus.
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*Note: y positive goes DOWN. With a positive M and y to the bottom fiber as positive, it results in a TENSION
stress (we’ve called positive).

Transverse Loading in Beams -

We are aware that transverse beam loadings result in internal
shear and bending moments.

We designed sections based on bending stresses, since this stress
dominates beam behavior.

There can be shear stresses horizontally within a beam member.
It can be shown that f =f

horizontal — " vertical
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Equilibrium and Derivation

In order for equilibrium for any element CDD’C’, there needs to be a horizontal force AH.

Tgaallzeat) @m0t V = fydA— f.dA

R :I | .: : " :... '..- LR
Q is a moment area with respect to the neutral axis of the area above or below the horizontal
where the AH occurs.
_ViQ

Q is a maximum when y = 0 (at the neutral axis). Vlongitudital = I

AX

is a horizontal shear per unit length — shear flow
q P J q — Vlongitudilal — VTQ
AX |

Shearing Stresses

foe ™ 0 on the beam’s surface. Even if Q is a maximum at y =0, we

don’t know that the thickness is a minimum there. R
V.V . _VQ
“  AA  b-AX v-ave Ib

Rectangular Sections i

f,_.. occurs at the neutral axis:

| _bn° Q=A7=b%.%%:bh% i

12 ]
then: Fig. 6.15
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Webs of Beams

In steel W or S sections the thickness

varies from the flange to the web. AV B
We neglect the shear stress in the flanges e ol || |
and consider the shear stress in the web d o—* e T B | 7
to be constant: ‘ s ol o o |5 v
[ it . e —
| |I1I-'£|E'
f _ 3V \Y f \Y ,
vemax — A x v-max
2A ANeb tWebd

Webs of | beams can fail in tension shear across a
panel with stiffeners or the web can buckle. Plastic Hinges J}
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{a) Shear Failure

Folds ar Buckles

{b) Shear Buckling

Shear Flow v

Even if the cut we make to find Q is not horizontal, but
arbitrary, we can still find the shear flow, g, as long as the
loads on thin-walled sections are applied in a plane of
symmetry, and the cut is made perpendicular to the surface of
the member.

_ \Q : - :. : : !

q=" |
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_ The shear flow magnitudes can ‘
" be sketched by knowing Q. i
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Connectors to Resist Horizontal Shear in Composite Members

Typical connections needing to resist shear are plates  ya
with nails or rivets or bolts in composite sections or
splices.

X __|
The pitch (spacing) can be determined by the
capacity in shear of the connector(s) to the shear |
flow over the spacing interval, p.

Vlongitudiral _ VQ V = \Q P
p = | longitudiml |
where
nF > VQconnected area
p = pitch length connector — | p

n = number of connectors connecting the connected area to the rest of the cross section

F = force capacity in one connector

Qconnected area — Aconnected area X Yconnected area

Yeonnected area = distance from the centroid of the connected area to the neutral axis

Connectors to Resist Horizontal Shear in Composite Members

Even vertical connectors have shear flow across them. A P
i
|
|

The spacing can be determined by the capacity in shear of the
connector(s) to the shear flow over the spacing interval, p. !
nF I : P
p <

connector I l
VQ connected area

Unsymmetrical Sections or Shear

If the section is not symmetric, or has a shear not in that plane, the member can bend and twist.

'
I

If the load is applied at the shear center
there will not be twisting. This is the
location where the moment caused by
shear flow = the moment of the shear
force about the shear center.
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Calculate the maximum bending and shear stress for the

beam shown.

ALSO: Determine the minimum nail
spacing required (pitch) if the shear
capacity of a nail (F) is 250 Ib.
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o = 100 b/,
T |,
A L=20" A
$©L/2 =1,000 Ib. 41,000 Ib.
1,000 Ib.
; i
10'
~1,000 Ib.
/M= 5,000 1o
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Example 2

8.11 Abuilt-up plywood box beam with 2 x 4 545 top and
bottom flanges is held together by nails. Determine the
pitch (spacing) of the nails if the beam supports a uniform
load of 200 #/ft. along the 26-foot span. Assume the nails
have a shear capacity of 80# each.

Solution:

Construct the shear (V) diagram to obtain the critical shear
condition and its location

Note that the condition of shear is critical at the supports,
and the shear intensity decreases as you approach the
center line of the beam. This would indicate that the nail
spacing P varies from the support to midspan. Nails are
closely spaced at the support, but increasing spacing
occurs toward midspan, following the shear diagram.
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N.A.

*—p— - - X

=00 ¥/FT.

Q= JAV = (9")(%")(4.5")+(9")(%:")(4.5")+(1.5")(3.5")(8.25") = 83.8 in®

i3
fymax = (2’600_# )4( 83'31”' )" =180.2 psi Assume:
(1,202.6in.7)(}2 "™+ 12") F = Capacity of two nails (one each side) at the
flange; representing two shear surfaces
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Q= Ay = (5.25in.%)(8.25”) = 43.3 in.?
Shear force = f, x A, At the maximum shear location (support) where V = 2,600#

where:

_ (2 nails x80 #/nail)(1,202.6 in?)

=1.71"

A, = shear area

(2,600# )(43.3 in.?)



