Steel Design

I	ota	tion	1:	

= name for width dimension a= name for area \boldsymbol{A} = area of a bolt A_b = effective net area found from the A_e product of the net area A_n by the shear lag factor U = gross area, equal to the total area A_{ϱ} ignoring any holes = gross area subjected to shear for A_{gv} block shear rupture = net area, equal to the gross area A_n subtracting any holes, as is A_{net} = net area subjected to tension for A_{nt} block shear rupture = net area subjected to shear for block A_{nv} shear rupture = area of the web of a wide flange A_w section AISC = American Institute of Steel Construction ASD = allowable stress design = name for a (base) width = total width of material at a horizontal section = name for height dimension = width of the flange of a steel beam b_f cross section = factor for determining M_u for B_1 combined bending and compression = largest distance from the neutral caxis to the top or bottom edge of a beam = coefficient for shear stress for a c_1 rectangular bar in torsion C_b = modification factor for moment in ASD & LRFD steel beam design = column slenderness classification C_c constant for steel column design

D = shorthand for dead load DL= shorthand for dead load = eccentricity \boldsymbol{E} = shorthand for earthquake load = modulus of elasticity = axial compressive stress f_c = bending stress f_b = bearing stress f_p = shear stress f_{ν} $f_{v-max} = \text{maximum shear stress}$ = vield stress = shorthand for fluid load F F_a = allowable axial (compressive) stress = allowable bending stress F_b = critical unfactored compressive F_c stress for buckling in LRFD F_{cr} = flexural buckling stress F_e = elastic critical buckling stress F_{EXX} = yield strength of weld material = nominal strength in LRFD F_n = nominal tension or shear strength of a bolt = allowable bearing stress F_p F_t = allowable tensile stress = ultimate stress prior to failure F_u F_{ν} = allowable shear stress $F_{\rm y}$ = yield strength = yield strength of web material F_{yw} = factor of safety F.S. = gage spacing of staggered bolt g holes h = name for a height = height of the web of a wide flange h_c steel section H= shorthand for lateral pressure load Ι = moment of inertia with respect to neutral axis bending = moment of inertia of trial section I_{trial} $I_{req'd}$ = moment of inertia required at limiting deflection I_{v} = moment of inertia about the y axis

= polar moment of inertia

= web shear coefficient

= modification factor accounting for combined stress in steel design

= calculus symbol for differentiation

= depth of a wide flange section

 C_m

 C_{v}

 d_h

k = distance from outer face of W flange to the web toe of fillet

shape factor for plastic design of steel beams

K = effective length factor for columns, as is k

l = name for length

L = name for length or span length

= shorthand for live load

 L_b = unbraced length of a steel beam

L_c = clear distance between the edge of a hole and edge of next hole or edge of the connected steel plate in the direction of the load

 L_e = effective length that can buckle for column design, as is ℓ_e

 L_r = shorthand for live roof load

 maximum unbraced length of a steel beam in LRFD design for inelastic lateral-torsional buckling

L_p = maximum unbraced length of a steel beam in LRFD design for full plastic flexural strength

L' = length of an angle in a connector with staggered holes

LL = shorthand for live load

LRFD = load and resistance factor design

M = internal bending moment

 M_a = required bending moment (ASD) M_n = nominal flexure strength with the full section at the yield stress for LRFD beam design

 M_{max} = maximum internal bending moment

 $M_{max-adj}$ = maximum bending moment adjusted to include self weight

 M_p = internal bending moment when all fibers in a cross section reach the yield stress

 M_u = maximum moment from factored loads for LRFD beam design

 M_y = internal bending moment when the extreme fibers in a cross section reach the yield stress

n = number of bolts

n.a. = shorthand for neutral axis

N = bearing length on a wide flange steel section

> = bearing type connection with threads included in shear plane

p = bolt hole spacing (pitch)

P = name for load or axial force vector

 P_a = required axial force (ASD) P_c = available axial strength

 P_{el} = Euler buckling strength

 P_n = nominal column load capacity in steel design

 P_r = required axial force

 P_u = factored column load calculated from load factors in LRFD steel design

Q = first moment area about a neutral axis

generic axial load quantity for LRFD design

r = radius of gyration

 r_y = radius of gyration with respect to a y-axis

R = generic load quantity (force, shear, moment, etc.) for LRFD design

= shorthand for rain or ice load

= radius of curvature of a deformed beam

 R_a = required strength (ASD)

 R_n = nominal value (capacity) to be multiplied by ϕ in LRFD and divided by the safety factor Ω in ASD

R_u = factored design value for LRFD design

s = longitudinal center-to-center spacing of any two consecutive holes

S = shorthand for snow load

= section modulus

= allowable strength per length of a weld for a given size

 $S_{req'd}$ = section modulus required at allowable stress

 $S_{req'd-adj}$ = section modulus required at allowable stress when moment is adjusted to include self weight

SC = slip critical bolted connection

t = thickness of the connected material

 t_f = thickness of flange of wide flange

t_w	= thickness of web of wide flange	Z	= plastic section modulus of a steel
T	= torque (axial moment)		beam
	= shorthand for thermal load	Z_x	= plastic section modulus of a steel
	= throat size of a weld		beam with respect to the x axis
U	= shear lag factor for steel tension	Δ_{act}	$t_{ual} = $ actual beam deflection
	member design	Δ allo	owable = allowable beam deflection
U_{bs}	= reduction coefficient for block	Δ $_{lim}$	allowable beam deflection limit
	shear rupture	Δ ma	x = maximum beam deflection
V	= internal shear force	$\boldsymbol{\mathcal{E}}_{\mathrm{v}}$	= yield strain (no units)
V_a	= required shear (ASD)	ϕ	= resistance factor
V_{max}	= maximum internal shear force	Ψ	
V_{max-a}	adj = maximum internal shear force	1	= diameter symbol
	adjusted to include self weight	ϕ_b	= resistance factor for bending for
V_n	= nominal shear strength capacity for		LRFD
	LRFD beam design	ϕ_c	= resistance factor for compression
V_u	= maximum shear from factored loads		for LRFD
	for LRFD beam design	ϕ_{t}	= resistance factor for tension for
W	= name for distributed load		LRFD
W_{adjus}	ted = adjusted distributed load for	$\phi_{_{\scriptscriptstyle \mathcal{V}}}$	= resistance factor for shear for
	equivalent live load deflection limit	$\boldsymbol{\varphi}_{v}$	
W_{equiv}	alent = the equivalent distributed load		LRFD
	derived from the maximum bending	γ	= load factor in LRFD design
	moment	π	= pi (3.1415 radians or 180°)
W_{selfw}	t_t = name for distributed load from self	θ	= slope of the beam deflection curve
	weight of member	ρ	= radial distance
W	= shorthand for wind load	σ	= engineering symbol for normal
\mathcal{X}	= horizontal distance	-	stress
X	= bearing type connection with	Ω	= safety factor for ASD
	threads excluded from the shear	ſ	= symbol for integration
	plane	•	
y	= vertical distance	${\it \Sigma}$	= summation symbol

Steel Design

Structural design standards for steel are established by the *Manual of Steel Construction* published by the American Institute of Steel Construction, and uses **Allowable Stress Design** and **Load and Factor Resistance Design**. With the 13th edition, both methods are combined in one volume which provides common requirements for analyses and design and requires the application of the same set of specifications.

Materials

American Society for Testing Materials (ASTM) is the organization responsible for material and other standards related to manufacturing. Materials meeting their standards are guaranteed to have the published strength and material properties for a designation.

ARCH 614 Note Set 16 S2013abn

A36 – carbon steel used for plates, angles $F_y = 36 \text{ ksi}$, $F_u = 58 \text{ ksi}$, E = 29,000 ksi A572 – high strength low-alloy used for some beams A992 – for building framing used for most beams $F_y = 60 \text{ ksi}$, $F_u = 75 \text{ ksi}$, E = 30,000 ksi $F_y = 50 \text{ ksi}$, $F_u = 65 \text{ ksi}$, E = 30,000 ksi (A572 Grade 50 has the same properties as A992)

$$\underline{\text{ASD}} \qquad R_a \leq \frac{R_n}{\Omega}$$

where R_a = required strength (dead or live; force, moment or stress)

 R_n = nominal strength specified for ASD

 Ω = safety factor

Factors of Safety are applied to the limit strengths for allowable strength values:

 $\begin{array}{ll} \text{bending (braced, $L_b < L_p$)} & \Omega = 1.67 \\ \text{bending (unbraced, $L_p < L_b$ and $L_b > L_r$)} & \Omega = 1.67 \text{ (nominal moment reduces)} \\ \text{shear (beams)} & \Omega = 1.5 \text{ or } 1.67 \\ \text{shear (bolts)} & \Omega = 2.00 \text{ (tabular nominal strength)} \\ \text{shear (welds)} & \Omega = 2.00 \end{array}$

- L_b is the unbraced length between bracing points, laterally
- L_p is the limiting laterally unbraced length for the limit state of yielding
- L_r is the limiting laterally unbraced length for the limit state of inelastic lateral-torsional buckling

$$\begin{array}{ll} \underline{LRFD} & R_u \leq \phi R_n & where \cdots R_u = \Sigma \gamma_i R_i \\ & \text{where} & \phi = \text{resistance factor} \\ & \gamma = \text{load factor for the type of load} \\ & R = \text{load (dead or live; force, moment or stress)} \\ & R_u = \text{factored load (moment or stress)} \\ & R_n = \text{nominal load (ultimate capacity; force, moment or stress)} \\ \end{array}$$

Nominal strength is defined as the

capacity of a structure or component to resist the effects of loads, as determined by computations using specified material strengths (such as yield strength, F_y , or ultimate strength, F_u) and dimensions and formulas derived from accepted principles of structural mechanics or by field tests or laboratory tests of scaled models, allowing for modeling effects and differences between laboratory and field conditions

Factored Load Combinations

The design strength, ϕR_n , of each structural element or structural assembly must equal or exceed the design strength based on the ASCE-7 (2010) combinations of factored nominal loads:

$$1.4D$$

$$1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$$

$$1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W)$$

$$1.2D + 1.0W + L + 0.5(L_r \text{ or } S \text{ or } R)$$

$$1.2D + 1.0E + L + 0.2S$$

$$0.9D + 1.0W$$

$$0.9D + 1.0E$$

Criteria for Design of Beams

$$F_b \text{ or } \phi F_n \ge f_b = \frac{Mc}{I}$$

Allowable normal stress or normal stress from LRFD should not be exceeded:

$$(M_a \leq M_n / \Omega \text{ or } M_u \leq \phi_b M_n)$$

Knowing M and F_b, the minimum section modulus fitting the limit is:

$$S_{req'd} \ge \frac{M}{F_b}$$

Determining Maximum Bending Moment

Drawing V and M diagrams will show us the maximum values for design. Remember:

$$V = \Sigma(-w)dx$$

$$M = \Sigma(V)dx$$

$$\frac{dV}{dx} = -w$$

$$\frac{dM}{dx} = V$$

Determining Maximum Bending Stress

For a prismatic member (constant cross section), the maximum normal stress will occur at the maximum moment.

For a *non-prismatic* member, the stress varies with the cross section AND the moment.

Deflections

If the bending moment changes, M(x) across a beam of constant material and cross section then the curvature will change: $\frac{1}{R} = \frac{M(x)}{EI}$

The slope of the n.a. of a beam, θ , will be tangent to the radius of curvature, R: $\theta = slope = \frac{1}{EI} \int M(x) dx$

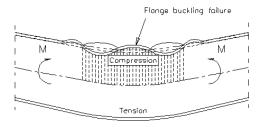
The equation for deflection, y, along a beam is: $y = \frac{1}{EI} \int \theta dx = \frac{1}{EI} \iint M(x) dx$

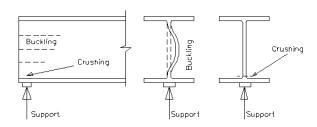
Elastic curve equations can be found in handbooks, textbooks, design manuals, etc...Computer programs can be used as well. Elastic curve equations can be superimposed ONLY if the stresses are in the elastic range.

The deflected shape is roughly the same shape flipped as the bending moment diagram but is constrained by supports and geometry.

Allowable Deflection Limits

All building codes and design codes limit deflection for beam types and damage that could happen based on service condition and severity. $y_{max}(x) = \Delta_{actual} \le \Delta_{allowable} = \frac{L}{value}$


Use	LL only	DL+LL
Roof beams:		
Industrial	L/180	L/120
Commercial		
plaster ceiling	L/240	L/180
no plaster	L/360	L/240
Floor beams:		
Ordinary Usage	L/360	L/240
Roof or floor (damageable	e elements)	L/480


Lateral Buckling

With compression stresses in the top of a beam, a sudden "popping" or buckling can happen even at low stresses. In order to prevent it, we need to brace it along the top, or laterally brace it, or provide a bigger I_{ν} .

Local Buckling in Steel I Beams- Web Crippling or Flange Buckling

Concentrated forces on a steel beam can cause the web to buckle (called **web crippling**). Web stiffeners under the beam loads and bearing plates at the supports reduce that tendency. Web stiffeners also prevent the web from shearing in plate girders.

The maximum support load and interior load can be determined from:

$$P_{n\,(\text{max}-\text{end})} = (2.5k + N)F_{yw}t_w$$

$$P_{n \text{ (interior)}} = (5k + N)F_{yw}t_w$$

where $t_w =$ thickness of the web

 F_{yw} = yield strength of the web

N =bearing length

k = dimension to fillet found in beam section tables

$$\phi = 1.00 \, (LRFD)$$
 $\Omega = 1.50 \, (ASD)$

In order to determine the loads on a beam (or girder, joist, column, frame, foundation...) we can start at the top of a structure and determine the <u>tributary area</u> that a load acts over and the beam needs to support. Loads come from material weights, people, and the environment. This area is assumed to be from half the distance to the next beam over to halfway to the next beam.

The reactions must be supported by the next lower structural element *ad infinitum*, to the ground.

LRFD - Bending or Flexure

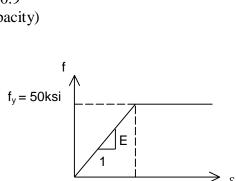
For determining the flexural design strength, $\phi_b M_n$, for resistance to pure bending (no axial load) in most flexural members where the following conditions exist, a single calculation will suffice:

$$\Sigma \gamma_i R_i = M_u \le \phi_b M_n = 0.9 F_y Z$$

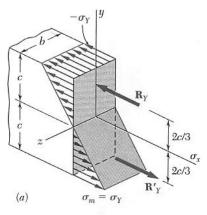
where

 $M_{\text{u}} = \text{maximum moment from factored loads} \\$

 $\varphi_b = resistance \ factor \ for \ bending = 0.9$


 M_n = nominal moment (ultimate capacity)

 F_y = yield strength of the steel

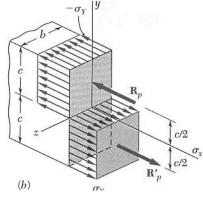

Z = plastic section modulus

Plastic Section Modulus

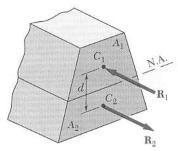
Plastic behavior is characterized by a yield point and an increase in strain with no increase in stress.

for resistance to bearing

Internal Moments and Plastic Hinges

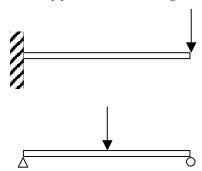

Plastic hinges can develop when all of the material in a cross section sees the yield stress. Because all the material at that section can strain without any additional load, the member segments on either side of the hinge can rotate, possibly causing instability.

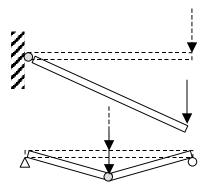
For a rectangular section:


Elastic to
$$f_y$$
:

Elastic to
$$f_y$$
: $M_y = \frac{I}{c} f_y = \frac{bh^2}{6} f_y = \frac{b(2c)^2}{6} f_y = \frac{2bc^2}{3} f_y$

Fully Plastic:
$$M_{ult}$$
 or $M_p = bc^2 f_y = \frac{3}{2} M_y$




For a non-rectangular section and internal equilibrium at σ_v , the n.a. will not necessarily be at the centroid. The n.a. occurs where the $A_{tension} = A_{compression}$. The reactions occur at the centroids of the tension and compression areas.

 $A_{tension} = A_{compression}$

Shape Factor:

The ratio of the plastic moment to the elastic moment at yield:

$$k = \frac{M_p}{M_y}$$

k = 3/2 for a rectangle

 $k \approx 1.1$ for an I beam

Plastic Section Modulus

$$Z = \frac{M_p}{f_v} \qquad and \qquad k = \frac{Z}{S}$$

Design for Shear

$$V_a \leq V_n / \Omega$$
 or $V_u \leq \phi_v V_n$

The nominal shear strength is dependent on the cross section shape. Case 1: With a thick or stiff web, the shear stress is resisted by the web of a wide flange shape (with the exception of a handful of W's). Case 2: When the web is not stiff for doubly symmetric shapes, singly symmetric shapes (like channels) (excluding round high strength steel shapes), inelastic web buckling occurs. When the web is very slender, elastic web buckling occurs, reducing the capacity even more:

Case 1) For
$$h/t_w \le 2.24 \sqrt{\frac{E}{F_y}}$$
 $V_n = 0.6 F_{yw} A_w$ $\underline{\phi_y} = 1.00 \text{ (LRFD)}$ $\Omega = 1.50 \text{ (ASD)}$

where *h* equals the clear distance between flanges less the fillet or corner radius for rolled shapes

 V_n = nominal shear strength

 F_{yw} = yield strength of the steel in the web

 $A_w = t_w d = area of the web$

Case 2) For
$$h/t_w > 2.24 \sqrt{\frac{E}{F_v}}$$
 $V_n = 0.6 F_{yw} A_w C_v$ $\phi_v = 0.9$ (LRFD) $\Omega = 1.67$ (ASD)

where C_v is a reduction factor (1.0 or less by equation)

Design for Flexure

$$M_a \le M_n / \Omega$$
 or $M_u \le \phi_b M_n$ $\phi_b = 0.90 \text{ (LRFD)}$ $\Omega = 1.67 \text{ (ASD)}$

The nominal flexural strength M_n is the *lowest* value obtained according to the limit states of

- 1. yielding, limited at length $L_p = 1.76r_y \sqrt{\frac{E}{F_y}}$, where r_y is the radius of gyration in y
- 2. lateral-torsional buckling (inelastic) limited at length L_r
- 3. flange local buckling
- 4. web local buckling

Beam design charts show available moment, M_n/Ω and $\phi_b M_n$, for unbraced length, L_b , of the compression flange in one-foot increments from 1 to 50 ft. for values of the bending coefficient $C_b = 1$. For values of $1 < C_b \le 2.3$, the required flexural strength M_u can be reduced by dividing it by C_b . ($C_b = 1$ when the bending moment at any point within an unbraced length is larger than that at both ends of the length. C_b of 1 is conservative and permitted to be used in any case. When the free end is unbraced in a cantilever or overhang, $C_b = 1$. The full formula is provided below.)

NOTE: the self weight is not included in determination of M_n/Ω or $\phi_b M_n$

Compact Sections

For a laterally braced *compact* section (one for which the plastic moment can be reached before local buckling) only the limit state of yielding is applicable. For unbraced compact beams and non-compact tees and double angles, only the limit states of yielding and lateral-torsional buckling are applicable.

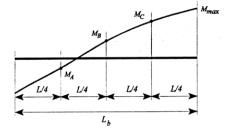
Compact sections meet the following criteria: $\frac{b_f}{2t_f} \le 0.38 \sqrt{\frac{E}{F_y}}$ and $\frac{h_c}{t_w} \le 3.76 \sqrt{\frac{E}{F_y}}$

where:

 b_f = flange width in inches

 t_f = flange thickness in inches

E =modulus of elasticity in ksi


 F_{v} = minimum yield stress in ksi

 h_c = height of the web in inches

 t_w = web thickness in inches

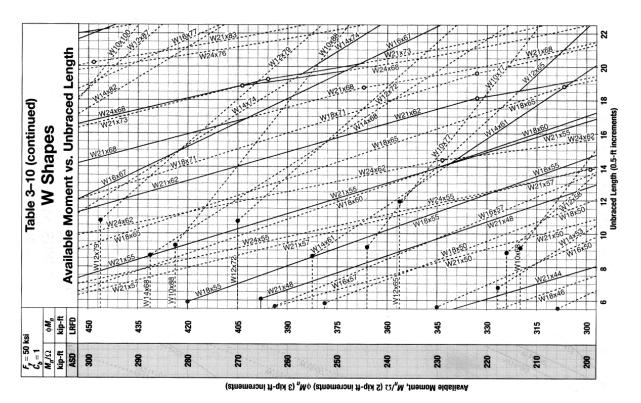
With lateral-torsional buckling the nominal flexural strength is

$$M_n = C_b \left[M_p - (M_p - 0.7F_y S_x) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right] \le M_p$$

where C_b is a modification factor for non-uniform moment diagrams where, when both ends of the beam segment are braced:

$$C_b = \frac{12.5M_{max}}{2.5M_{max} + 3M_A + 4M_B + 3M_C}$$

 M_{max} = absolute value of the maximum moment in the unbraced beam segment


 M_A = absolute value of the moment at the quarter point of the unbraced beam segment

 M_B = absolute value of the moment at the center point of the unbraced beam segment

 M_C = absolute value of the moment at the three quarter point of the unbraced beam segment length.

Available Flexural Strength Plots

Plots of the available moment for the unbraced length for wide flange sections are useful to find sections to satisfy the design criteria of $M_a \leq M_n/\Omega$ or $M_u \leq \phi_b M_n$. The maximum moment that can be applied on a beam (taking self weight into account), M_a or M_u , can be plotted against the unbraced length, L_b . The limit L_p is indicated by a solid dot (\bullet), while L_r is indicated by an open dot (O). Solid lines indicate the most economical, while dashed lines indicate there is a lighter section that could be used. C_b , which is a modification factor for non-zero moments at the ends, is 1 for simply supported beams (0 moments at the ends). (see *figure*)

Design Procedure

The intent is to find the most light weight member (which is economical) satisfying the section modulus size.

- 1. Determine the unbraced length to choose the limit state (yielding, lateral torsional buckling or more extreme) and the factor of safety and limiting moments. Determine the material.
- 2. Draw V & M, finding V_{max} and M_{max} .for unfactored loads (ASD, V_a & M_a) or from factored loads (LRFD, V_u & M_u)
- 3. Calculate $Z_{\text{req'd}}$ when yielding is the limit state. This step is equivalent to determining if $f_b = \frac{M_{max}}{S} \le F_b$, $Z_{req'd} \ge \frac{M_{max}}{F_b} = \frac{M_{max}}{F_y}$ and $Z \ge \frac{M_u}{\phi_b F_y}$ to meet the design criteria that

$$M_a \leq M_n / \Omega$$
 or $M_u \leq \phi_b M_n$

If the limit state is something other than yielding, determine the nominal moment, M_n , or use plots of available moment to unbraced length, L_b .

4. For steel: use the section charts to find a trial Z and remember that the beam self weight (the second number in the section designation) will increase $Z_{req'd}$ The design charts show the lightest section within a grouping of similar Z's.

TABLE 9.1 Load Factor Resistance Design Selection

			$F_y = 3$	86 ksi	
Designation	Z_x in. ³	L_p ft	$\frac{L_r}{\mathrm{ft}}$	M_p kip-ft	M _r kip-ft
W 33 × 141	514	10.1	30.1	1,542	971
W 30×148	500	9.50	30.6	1,500	945
W 24×162	468	12.7	45.2	1,404	897
W 24 × 146	418	12.5	42.0	1,254	804
W 33 × 118	415	9.67	27.8	1,245	778
W 30×124	408	9.29	28.2	1,224	769
W 21×147	373	12.3	46.4	1,119	713
W 24×131	370	12.4	39.3	1,110	713
W 18×158	356	11.4	56.5	1,068	672

**** Determine the "updated" V_{max} and M_{max} including the beam self weight, and verify that the updated $Z_{req'd}$ has been met. *****

- 5. Consider lateral stability.
- 6. Evaluate horizontal shear using V_{max} . This step is equivalent to determining if $f_v \le F_v$ is satisfied to meet the design criteria that $V_a \le V_n / \Omega$ or $V_u \le \phi_v V_n$

For I beams:
$$f_{v-\text{max}} = \frac{3V}{2A} \approx \frac{V}{A_{web}} = \frac{V}{t_w d}$$

$$V_n = 0.6F_{yw}A_w \quad or \ V_n = 0.6F_{yw}A_w C_v$$
 Others:
$$f_{v-\text{max}} = \frac{VQ}{Ib}$$

- 7. Provide adequate bearing area at supports. This step is equivalent to determining if $f_p = \frac{P}{A} \le F_p$ is satisfied to meet the design criteria that $P_a \le P_n / \Omega$ or $P_u \le \phi P_n$
- 8. Evaluate shear due to torsion $f_{v} = \frac{T\rho}{J} \text{ or } \frac{T}{c_{1}ab^{2}} \le F_{v} \text{ (circular section or rectangular)}$
- 9. Evaluate the deflection to determine if $\Delta_{maxLL} \leq \Delta_{LL-allowed}$ and/or $\Delta_{maxTotal} \leq \Delta_{Total allowed}$

**** note: when $\Delta_{calculated} > \Delta_{limit}$, $I_{req'd}$ can be found with: $I_{req'd} \geq \frac{\Delta_{loobig}}{\Delta_{limit}}$, $I_{trial} \geq \frac{\Delta_{loobig}}{\Delta_{limit}}$, where $L_{trial} \geq \frac{\Delta_{loobig}}{\Delta_{limit}}$, $L_{trial} \geq \frac{\Delta_{loobig}}{\Delta_{limit}}$

FOR ANY EVALUATION:

Redesign (with a new section) at any point that a stress or serviceability criteria is NOT satisfied and re-evaluate each condition until it is satisfactory.

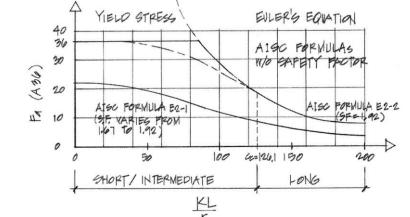
Load Tables for Uniformly Loaded Joists & Beams

Tables exist for the common loading situation of uniformly distributed load. The tables either provide the safe distributed load based on bending and deflection limits, they give the allowable span for specific live and dead loads including live load deflection limits.

If the load is *not uniform*, an *equivalent uniform load* can be calculated $M_{max} = \frac{W_{equivalent}L^2}{8}$ from the maximum moment equation:

If the deflection limit is less, the design live load to check against allowable must be increased, ex. $w_{adjusted} = w_{ll-have} \left(\frac{L/360}{L/400} \right) \quad \textit{table limit wanted}$

Criteria for Design of Columns


If we know the loads, we can select a section that is adequate for strength & buckling.

If we know the length, we can find the limiting load satisfying strength & buckling.

Allowable Stress Design

The allowable stress design provisions prior to the combined design of the 13th edition of the AISC Steel Construction Manual had relationships for short and intermediate length columns (crushing and the transition to inelastic buckling), and long columns (buckling) as shown in the

figure. The transition slenderness ratio is based on the yield strength and modulus of elasticity and are 126.1 ($F_y = 36 \text{ ksi}$) and 107.0 ($F_y = 50 \text{ ksi}$) with a limiting slenderness ratio of 200.

Design for Compression

American Institute of Steel Construction (AISC) Manual 14th ed:

$$P_a \leq P_n / \Omega$$
 or $P_u \leq \phi_c V_n$ where
$$P_u = \Sigma \gamma_i P_i$$

γ is a <u>load factor</u>

P is a <u>load</u> type

φ is a resistance factor

P_n is the <u>nominal load capacity (strength)</u>

$$\phi = 0.90 \text{ (LRFD)}$$
 $\Omega = 1.67 \text{ (ASD)}$

For compression $P_n = F_{cr} A_g$

where: A_g is the cross section area and F_{cr} is the flexural buckling stress

The flexural buckling stress, F_{cr} , is determined as follows:

when
$$\frac{KL}{r} \le 4.71 \sqrt{\frac{E}{F_y}}$$
 or $(F_e \ge 0.44F_y)$:
$$F_{cr} = \left[0.658^{\frac{F_y}{F_e}}\right] F_y$$
when $\frac{KL}{r} > 4.71 \sqrt{\frac{E}{F_y}}$ or $(F_e < 0.44F_y)$:
$$F_{cr} = 0.877 F_e$$

where F_e is the elastic critical buckling stress:

$$F_e = \frac{\pi^2 E}{\left(KL/r\right)^2}$$

Design Aids

Tables exist for the value of the flexural buckling stress based on slenderness ratio. In addition, tables are provided in the AISC Manual for Available Strength in Axial Compression based on the effective length with respect to least radius of gyration, r_y . If the critical effective length is about the largest radius of gyration, r_x , it can be turned into an effective length about the y axis with the fraction r_x/r_y .

	= 50 ksi	٩	Ava Axial			(continued) Strength ression,	(continued) Strength ression,	inkips	(0	_	
				: - 55 8 : :	W Shapes	apes	8			W12	
Shape	2					¥	W12×				3
WVft.	#	65	96		87	7	62	7	72	9	65
Daei	8	P,100	φ.P.	P_n/Ω_c	o.P.	P,IOC	φ _c P _n	P,102	4°P"	P,10c	φ.P.
ilifican	5	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	•	844	1270	992	1150	694	1040	633	951	571	859
,	9	118	1220	735	1110	299	1000	209	913	548	824
, no	~ «	287	1200	252	1090	657	987	288	889	540	798
yrati	on \$	772	1160	669	1050	634	952	577	867	520	782
g to	2 ;	730	1110	660	1010	020	932	200	040	200	747
suil	2	720	1080	652	980	290	887	537	807	484	727
L SC	5	701	1050	634	953	573	862	522	784	470	902
issə	4 t	659	1020	595	924	226	836	909	761	456	685
l ot	2 4	697	067	3 6	000	200	701	2	710	405	200
toe	2 12	614	923	554	833	501	752	455	684	409	615
dsa	8	591	888	533	801	481	723	437	657	393	591
ı Abi	£ 5	267	852	511	769	194	694	419	630	377	566
M ()	3 8	2 2	244	446	027	74.	600	104	640	200	1 6
u) T	1 2	493	672	405	605	362	544	328	493	294	442
v 41	8	401	602	360	541	323	486	293	440	262	393
,Guə	8 8	356	534	319	479	286	430	259	386	231	347
əvi	8 8	274	412	246	369	220	331	9 5	299	171	267
loei	8	243	365	218	327	195	293	176	265	157	236
13	8	217	326	194	292	174	261	157	236	140	211
	8	195	292	157	262	141	234	141	212	126	189
					Properties	rties					
(kins)		137	206	121	181	104	157	6 06	136	78.2	117
Pw (kips/in.)	5	18.3	27.5	17.2	25.8	15.7	23.5	14.3	21.5	13.0	19.5
(Kips)		152	228	123	185	6 5	152	84.0	126	68.5	103
£ £			10.9	1	10.8		10.8		10.7	- 6	11.9
(in. ²)			82		25.6		3.2		1.1	, -	19.1
E (88	833	740	740	99	662	. 55	597	533	
Ê			3.09	4	3.07	7	3.05	2	3.04	=	3.02
	Ratio 7,77 P. (KL ²)/10 ⁴ (K-in. ²) P. (Kl ²)/10 ⁴ (K-in. ²)	23800	e - o c	21200		18900	6/.00	17100	c/ 00 S	15300	. 0 0
ASD	0		e	111111111111111111111111111111111111111					2		N. W.
0	- 1 67	4	000								

Procedure for Analysis

- 1. Calculate KL/r for each axis (if necessary). The largest will govern the buckling load.
- 2. Find F_{cr} as a function of KL/r from the appropriate equation (above) or table.
- 3. Compute $P_n = F_{cr} \cdot A_g$ or alternatively compute $f_c = P/A$ or P_u/A
- 4. Is the design satisfactory?

Is
$$P_a \le P_n/\Omega$$
 or $P_u \le \phi_c P_n$? \Rightarrow yes, it is; no, it is no good
or Is $f_c \le F_{cr}/\Omega$ or $\phi_c F_{cr}$? \Rightarrow yes, it is; no, it is no good

Procedure for Design

- 1. Guess a size by picking a section.
- 2. Calculate KL/r for each axis (if necessary). The largest will govern the buckling load.

- 3. Find F_{cr} as a function of KL/r from appropriate equation (above) or table.
- 4. Compute $P_n = F_{cr} \cdot A_g$ or alternatively compute $f_c = P/A$ or P_u/A
- 5. Is the design satisfactory?

Is $P_a \le P_n/\Omega$ or $P_u \le \phi_c P_n$? yes, it is; no, pick a bigger section and go back to step 2.

Is $f_c \le F_{cr}/\Omega$ or $\phi_c F_{cr}$? \Rightarrow yes, it is; no, pick a bigger section and go back to step 2.

6. Check design efficiency by calculating percentage of capacity used:

$$\frac{P_a}{P_n/\Omega}$$
 · 100% or $\frac{P_u}{\phi_c P_n}$ · 100%

If value is between 90-100%, it is efficient.

If values is less than 90%, pick a smaller section and go back to step 2.

Columns with Bending (Beam-Columns)

In order to *design* an adequate section for allowable stress, we have to start somewhere:

- 1. Make assumptions about the limiting stress from:
 - buckling
 - axial stress
 - combined stress
- 2. See if we can find values for r or A or Z
- 3. Pick a trial section based on if we think r or A is going to govern the section size.
- 4. Analyze the stresses and compare to allowable using the allowable stress method or interaction formula for eccentric columns.
- 5. Did the section pass the capacity adequacy test?
 - If not, do you *increase* r or A or Z?
 - If so, is the difference really big so that you could *decrease* r or A or Z to make it more efficient (economical)?
- 6. Change the section choice and go back to step 4. Repeat until the section meets the stress criteria.

Design for Combined Compression and Flexure:

The interaction of compression and bending are included in the form for two conditions based on the size of the required axial force to the available axial strength. This is notated as P_r (either P from ASD or P_u from LRFD) for the axial force being supported, and P_c (either P_n/Ω for ASD or $\phi_c P_n$ for LRFD). The increased bending moment due to the P- Δ effect must be determined and used as the moment to resist.

For
$$\frac{P_{r}}{P_{c}} \ge 0.2$$
: $\frac{P}{P_{n/\Omega}} + \frac{8}{9} \left(\frac{M_{x}}{M_{nx/\Omega}} + \frac{M_{y}}{M_{ny/\Omega}} \right) \le 1.0$ $\frac{P_{u}}{\phi_{c}P_{n}} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_{b}M_{nx}} + \frac{M_{uy}}{\phi_{b}M_{ny}} \right) \le 1.0$ (ASD) (LRFD)

For $\frac{P_{r}}{P_{c}} < 0.2$: $\frac{P}{2P_{n/\Omega}} + \left(\frac{M_{x}}{M_{nx/\Omega}} + \frac{M_{y}}{M_{ny/\Omega}} \right) \le 1.0$ $\frac{P_{u}}{2\phi_{c}P_{n}} + \left(\frac{M_{ux}}{\phi_{b}M_{nx}} + \frac{M_{uy}}{\phi_{b}M_{ny}} \right) \le 1.0$ (ASD) (LRFD)

where:

$$\begin{array}{ll} \text{for compression} & \underline{\varphi_c} = 0.90 \text{ (LRFD)} & \Omega = 1.67 \text{ (ASD)} \\ \text{for bending} & \underline{\varphi_b} = 0.90 \text{ (LRFD)} & \Omega = 1.67 \text{ (ASD)} \end{array}$$

For a <u>braced</u> condition, the moment magnification factor B_I is determined by $B_1 = \frac{C_m}{1 - (P_u/P_{el})} \ge 1.0$

where C_m is a modification factor accounting for end conditions

When not subject to transverse loading between supports in plane of bending:

= 0.6 - 0.4 (M_1/M_2) where M_1 and M_2 are the end moments and $M_1 < M_2$. M_1/M_2 is positive when the member is bent in reverse curvature (same direction), negative when bent in single curvature.

When there is transverse loading between the two ends of a member:

- = 0.85, members with restrained (fixed) ends
- = 1.00, members with unrestrained ends

P_{e1} =Euler buckling strength

$$P_{e1} = \frac{\pi^2 EA}{\left(\frac{Kl}{r}\right)^2}$$

Criteria for Design of Connections

Connections must be able to transfer any axial force, shear, or moment from member to member or from beam to column.

Connections for steel are typically high strength bolts and electric arc welds. Recommended practice for ease of construction is to specified *shop welding* and *field bolting*.

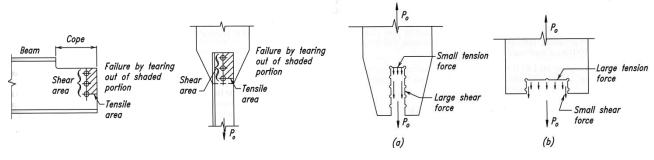
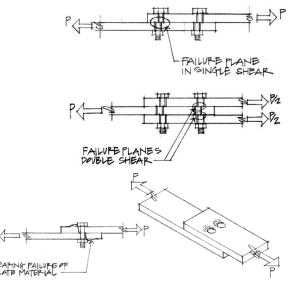


Fig. C-J4.1. Failure for block shear rupture limit state.


Fig. C-J4.2. Block shear rupture in tension

Bolted and Welded Connections

The limit state for connections depends on the loads:

- 1. tension yielding
- 2. shear yielding
- 3. bearing yielding
- 4. bending yielding due to eccentric loads
- 5. rupture

Welds must resist tension AND shear stress. The design strengths depend on the weld materials.

Bolted Connection Design

Bolt designations signify material and type of connection where

SC: slip critical

N: bearing-type connection with bolt threads included in shear plane

X: bearing-type connection with bolt threads excluded from shear plane

A307: similar in strength to A36 steel (also known as ordinary, common or unfinished bolts)

A325: high strength bolts

A490: high strength bolts (higher than A325)

Bearing-type connection: no frictional resistance in the contact surfaces is assumed and slip between members occurs as the load is applied. (Load transfer through bolt only).

Slip-critical connections: bolts are torqued to a high tensile stress in the shank, resulting in a clamping force on the connected parts. (Shear resisted by clamping force). Requires inspections and is useful for structures seeing dynamic or fatigue loading.

Bolts rarely fail in **bearing**. The material with the hole will more likely yield first.

For the determination of the net area of a bolt hole the width is taken as 1/16" greater than the nominal dimension of the hole. Standard diameters for bolt holes are 1/16" larger than the bolt diameter. (This means the net width will be 1/8" larger than the bolt.)

Design for Bolts in Bearing, Shear and Tension

Available shear values are given by bolt type, diameter, and loading (Single or Double shear) in AISC manual tables. Available shear value for slip-critical connections are given for limit states of serviceability or strength by bolt type, hole type (standard, short-slotted, long-slotted or oversized), diameter, and loading. Available tension values are given by bolt type and diameter in AISC manual tables.

Allowable bearing force values are given by bolt diameter, ultimate tensile strength, F_u, of the connected part, and thickness of the connected part in AISC manual tables.

For shear OR tension (same equation) in bolts:

$$R_a \le R_n / \Omega$$
 or $R_u \le \phi R_n$
where $R_u = \sum \gamma_i R_i$

• single shear (or tension) $R_n = F_n A_b$

• double shear
$$R_n = F_n 2A_b$$

where $\phi =$ the resistance factor

 F_n = the nominal tension or shear strength of the bolt

 A_b = the cross section area of the bolt

$$\phi = 0.75 \text{ (LRFD)} \qquad \Omega = 2.00 \text{ (ASD)}$$

For bearing of plate material at bolt holes:

$$R_a \le R_n / \Omega$$
 or $R_u \le \phi R_n$
where $R_u = \sum \gamma_i R_i$

deformation at bolt hole is a concern

$$R_n = 1.2L_c t F_u \le 2.4 dt F_u$$

• deformation at bolt hole is not a concern

$$R_n = 1.5 L_c t F_u \le 3.0 dt F_u$$

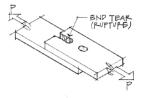


Figure 10.11 End tear-out.

• long slotted holes with the slot perpendicular to the load

$$R_n = 1.0L_c t F_u \le 2.0 dt F_u$$

where R_n = the nominal bearing strength

 F_u = specified minimum tensile strength

 L_c = clear distance between the edges of the hole and the next hole or edge in the direction of the load

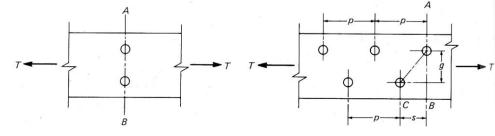
d = nominal bolt diameter

t = thickness of connected material

$$\phi = 0.75 \text{ (LRFD)} \qquad \Omega = 2.00 \text{ (ASD)}$$

The *minimum* edge desistance from the center of the outer most bolt to the edge of a member is generally 13/4 times the bolt diameter for the sheared edge and 11/4 times the bolt diameter for the rolled or gas cut edges.

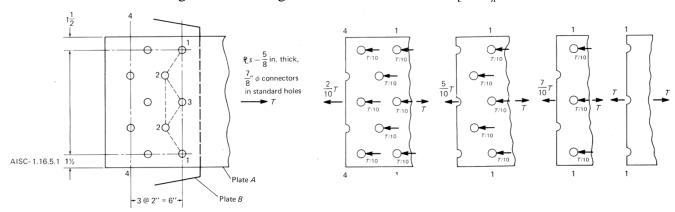
The *maximum* edge distance should not exceed 12 times the thickness of thinner member or 6 in.


Standard bolt hole spacing is 3 in. with the minimum spacing of $2\frac{2}{3}$ times the diameter of the bolt, d_b . Common edge distance from the center of last hole to the edge is $1\frac{1}{4}$ in..

Tension Member Design

In steel tension members, there may be bolt holes which reduce the size of the cross section.

- g refers to the row spacing or gage
 p refers to the bolt spacing or pitch
 s refers to the longitudinal spacing of two consecutive holes
- Effective Net Area:


The smallest effective are must be determined by subtracting the bolt hole areas. With

staggered holes, the shortest length must be evaluated.

A series of bolts can also transfer a portion of the tensile force, and some of the effective net areas see reduced stress.

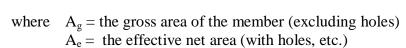
The effective net area, A_e , is determined from the net area, A_n , multiplied by a shear lag factor, U, which depends on the element type and connection configuration. If a portion of a connected member is not fully connected (like the leg of an angle), the unconnected part is not subject to the full stress and the shear lag factor can range from 0.6 to 1.0: $A_e = A_n U$

For tension elements:

$$R_a \le R_n / \Omega$$
 or $R_u \le \phi R_n$
where $R_u = \sum \gamma_i R_i$

$$R_n = F_y A_g$$

$$\phi = 0.90 \text{ (LRFD)}$$

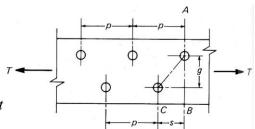

$$\Omega = 1.67 \text{ (ASD)}$$

2. rupture

$$R_n = F_u A_e$$

$$\phi = 0.75 \text{ (LRFD)}$$

$$\Omega = 2.00 \text{ (ASD)}$$



 F_y = the yield strength of the steel

 F_u = the tensile strength of the steel (ultimate)

When holes are staggered in a chain of holes (zigzagging) at diagonals, the length of each path from hole edge to edge is taken as the net area less each bolt hold area and the addition of

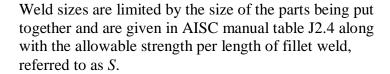
$$\frac{s^2}{4g}$$
 for each gage space in the chain: $A_n = bt - \Sigma ht - \Sigma \left(\frac{s^2}{4g}\right)t$

where b is the plate width

t is the plate thickness

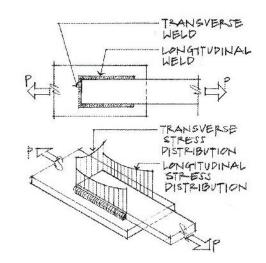
h is the standard hole diameter of each hole

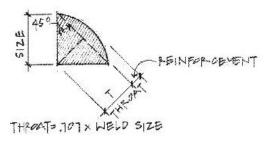
s is the staggered hole spacing


g is the gage spacing between rows

Welded Connections

Weld designations include the strength in the name, i.e. E70XX has Fy = 70 ksi. Welds are weakest in shear and are assumed to always fail in the shear mode.


The throat size, T, of a fillet weld is determined trigonometry by: $T = 0.707 \times \text{weld size}^*$


* When the submerged arc weld process is used, welds over 3/8" will have a throat thickness of 0.11 in. larger than the formula.

The *maximum* size of a fillet weld:

- a) can't be greater than the material thickness if it is ¹/₄" or less
- b) is permitted to be 1/16" less than the thickness of the material if it is over 1/4"

The *minimum length* of a fillet weld is 4 times the nominal size. If it is not, then the weld size used for design is ½ the length.

Intermittent fillet welds cannot be less than four times the weld size, not to be less than $1 \frac{1}{2}$ ".

TABLE J2.4
Minimum Size of Fillet Welds

Material Thickness of Thicker Part Joined (in.)	Minimum Size of Fillet Weld ^a (in.)
To 1/4 inclusive	1/8
Over 1/4 to 1/2	3/16
Over 1/2 to 3/4	1/4
Over ¾	5/16

For fillet welds:

$$R_a \le R_n / \Omega$$
 or $R_u \le \phi R_n$
where $R_u = \sum \gamma_i R_i$

for the weld metal: $R_n = 0.6F_{EXX}Tl = Sl$

$$\phi = 0.75 \text{ (LRFD)}$$
 $\Omega = 2.00 \text{ (ASD)}$

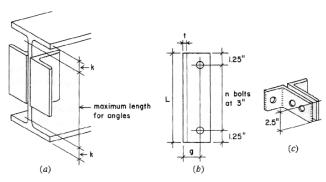
where:

T is throat thickness l is length of the weld

For a connected part, the other limit states for the base metal, such as tension yield, tension rupture, shear yield, or shear rupture **must** be considered.

Available	Strength of Fil	llet Welds
per	r inch of weld (φS)
Weld Size	E60XX	E70XX
(in.)	(k/in.)	(k/in.)
$\frac{3}{16}$	3.58	4.18
1/4	4.77	5.57
5/16	5.97	6.96
3/8	7.16	8.35
7/16	8.35	9.74
1/2	9.55	11.14
5/8	11.93	13.92
3/4	14.32	16.70

(not considering increase in throat with submerged arc weld process)

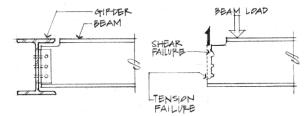

Framed Beam Connections

Coping is the term for cutting away part of the flange to connect a beam to another beam using welded or bolted angles.

AISC provides tables that give bolt and angle available strength knowing number of bolts, bolt type, bolt diameter, angle leg thickness, hole type and coping, *and* the wide flange beam being connected.

Group A bolts include A325, while Group B includes A490.

There are also tables for bolted/welded double-angle connections and all-welded double-angle connections.


Sample AISC Table for Bolt and Angle Available Strength in All-Bolted Double-Angle Connections

98 √3	= 65 ksi	(D)	₹	-Bolted Double-A	픚	be	2	碞	6-7	All-Bolted Double-Angle	<u>e</u>	100 KG	ر 4-in-	਼ਵ
algr rr _{>} i	11				ŏ	Connections	ec	Ę	JS)			Bolts	ts
ΑĀ	= 58 ksi	053	unitar i	गाह भार	8	off and	Angle	Availab	le Stre	Bolt and Angle Available Strength, kips	bs	7		3 (2)
4	4 Rows	#08	ŕ	Throad	à	Holo	ope		Ang	Angle Thickness, in.	ckness,	Ë	SWON!	
761	40 40	Group	8	Cond.	Ē 斉	Type Type	8	1/4			Grove.	3/8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/2
W24	W24, Z1, 18, 16	. V. O	E	U.S.A	3383	925	ASD	LRFD	0111114		ASD		ASD	ASD LRFD
				z >	တ ပ		67.1	5 5	83.9	126	95.5	143	95.5	143
					0 0	OTO OTO	50.6	75.0	50.0	75.0	200		50 8	
		Group	S	သ	, 0	ONS ONS	43.1	64.5	43.1	64.5	20		43.1	
1	1	d A	Clar	Class A	8	SSLT	50.6	75.9	1000	75.9	R.C.	75.9	50.6	- 1
1:	6-1	2		5	S	STD	67.1	101	17752	126			84.4	
1	Ør		Clas	Class B	۰ <i>و</i>	SNO	65.3	97.9	71.9	108	71.9	108	71.9	2 28
7	1			2	N O	STD	67.1	101	83.0	126	1 0		120	
, 6			_	: ×	o io	STD	67.1	10	83.9	126	5	151	134	201
- ເອເ	~		6	٤	S	STD	63.3	94.9	63.3	94.9	63.3	94.9	63.3	94.9
		Group	c as	Class A	6	SAO	53.9	80.7	53.9	80.7	53.9		53.9	
		20		3	8	SSLI	63.3	101	63.3	94.9	63.3	94.9	63.3	94.9
			S	SC	n	OVS OVS	65.3	97.9	8 2.8	122	80.0	134	80.0	
			Clas	Class B	S 6	SSIT	65.8	98.7		123	98.7	148	105	
		Be	am We	b Avail	able St	trength	per	ch Thic	kness,	Beam Web Available Strength per Inch Thickness, kips/in.				
	25.7			STD	و			6	SNO			SSLT	5	
	Hole lype			=	13			Leh	Leh*, in.					
			11/2	12	7	13/4	-	11/2	2	13/4	=	11/2	=	13/4
		OZA.	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
		11/4	167	250	175	262	156	234	164	246	164	245	172	257
9	Coned at Ton	178	2 5	257	180	260	5 5	241	160	250	99 9	253	177	265
3 5	Flance Only	15/0	174	261	183	273	163	245	171	257	171	256	170	268
	N. SOS	2 .	18	272	189	284	3 5	256	179	268	178	267	186	279
		က	202	301	209	313	190	285	198	297	198	596	206	309
		11/4	156	234	156	234	146	219	146	219	156	234	156	234
		13/8	191	241	161	241	151	227	151	227	161	241	161	241
Spe	Coped at Both	11/2	166	249	166	249	156	234	156	234	166	249	166	249
Ë	Flanges	15/8	171	256	171	256	161	241	161	241	171	526	171	256
		7	181	272	185	278	17	256	176	263	178	267	185	278
	1837 1838	3	201	301	500	313	190	285	198	297	198	596	206	309
	Nucoped		234	321	234	321	234	321	234	321	234	321	234	321
Sup	Support Available Strength per Inch Thickness, kips/in.	e	Notes: STD = OVS = SSLT =	lotes: STD = Standard holes OVS = Oversized holes SSLT = Short-slotted h	Standard holes Oversized holes Short-slotted holes to direction of load	Standard holes Oversized holes Short-slotted holes transverse to direction of load	sverse		N = Th T = X SC = Sil	N = Threads included X = Threads excluded SC = Slip critical	papnio			
Hole Type	ASD	LRFD	* Tabula	ated valu	les inclu	ide 1/4-in	. reducti	on in en	d distanc	Tabulated values include ¹ /4-in, reduction in end distance, L _{eft} , to account for possible	o accour	nt for pos	ssible	SOLV SOLV
STD/ OVS/	89 7	702	Note: S been ac	underrun in beam lengin. Note: Slip-critical bolt values assume no mo been added to distribute loads in the fillers.	al bolt valistribute	gm. alues as: e loads ir	sume no	more th	an one t	undertun in beam Hengun. Undertun in beam Hengun. Under Silp-critical bot values assume no more than one filler has been provided or bolts have heen anded in dietrihute loade in the fillere.	peen pri	ovided or	r bolts h	ave

Limiting Strength or Stability States

In addition to resisting shear and tension in bolts and shear in welds, the connected materials may be subjected to shear, bearing, tension, flexure and even prying action. Coping can significantly reduce design strengths and may require web reinforcement. All the following must be considered:

- shear yielding
- shear rupture
- block shear rupture failure of a block at a beam as a result of shear and tension
- tension yielding
- tension rupture
- local web buckling
- lateral torsional buckling

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

Block Shear Strength (or Rupture):

$$R_a \le R_n / \Omega$$
 or $R_u \le \phi R_n$
where $R_u = \sum \gamma_i R_i$

$$R_n = 0.6F_u A_{nv} + U_{bs} F_u A_{nt} \le 0.6F_y A_{gv} + U_{bs} F_u A_{nt}$$

 $\phi = 0.75 \text{ (LRFD)} \qquad \Omega = 2.00 \text{ (ASD)}$

where:

 A_{nv} is the net area subjected to shear

 A_{nt} is the net area subjected to tension

 A_{gv} is the gross area subjected to shear

 $U_{bs} = 1.0$ when the tensile stress is uniform (most cases)

= 0.5 when the tensile stress is non-uniform

Gusset Plates

Gusset plates are used for truss member connections where the geometry prevents the members from coming together at the joint "point". Members being joined are typically double angles.

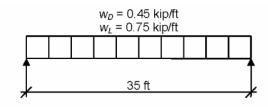
Decking

Shaped, thin sheet-steel panels that span several joists or evenly spaced support behave as continuous beams. Design tables consider a "1 unit" wide strip across the supports and determine maximum bending moment and deflections in order to provide allowable loads depending on the depth of the material.

The other structural use of decking is to construct what is called a *diaphragm*, which is a horizontal unit tying the decking to the joists that resists forces parallel to the surface of the diaphragm.

When decking supports a concrete topping or floor, the steel-concrete construction is called *composite*.

Example 1 (pg 290)


Example 2. A simple beam consisting of a W 21×57 is subjected to bending. Find the limiting moments (a) based on elastic stress conditions and a limiting stress of $F_y = 36$ ksi, and (b) based on full development of the plastic moment.

Example 2 (pg 300)

Example 7. Design a simply supported floor beam to carry a superimposed load of 2 kips per ft [29.2 kN/m] over a span of 24 ft [7.3 m]. (The term superimposed load is used to denote any load other than the weight of a structural member itself.) The superimposed load is 25 percent dead load and 75 percent live load. The yield stress is 36 ksi [250 MPa]. The floor beam is continuously supported along its length against lateral buckling.

Given:

Select an ASTM A992 W-shape beam with a simple span of 35 feet. Limit the member to a maximum nominal depth of 18 in. Limit the live load deflection to L/360. The nominal loads are a uniform dead load of 0.45 kip/ft and a uniform live load of 0.75 kip/ft. Assume the beam is continuously braced. Use ASD of the Unified Design method.

Beam Loading & Bracing Diagram (full lateral support)

Solution:

Material Properties:

ASTM A992

 $F_v = 50 \text{ ksi}$

 $F_u = 65 \text{ ksi}$

- 1. The unbraced length is 0 because it says it is fully braced.
- 2. Find the maximum shear and moment from unfactored loads:

 $w_a = 0.450 \text{ k/ft} + 0.750 \text{ k/ft} = 1.20 \text{ k/ft}$

 $V_a = 1.20 \text{ k/ft}(35 \text{ ft})/2 = 21 \text{ k}$

 $M_a = 1.20 \text{ k/ft}(35 \text{ ft})^2/8 = 184 \text{ k-ft}$

If $M_a \le M_n/\Omega$, the maxmimum moment for design is $M_a\Omega$: $M_{max} = 184$ k-ft

3. Find Zreg'd:

 $Z_{\text{reg'd}} \ge M_{\text{max}}/F_b = M_{\text{max}}/\Omega)/F_v = 184 \text{ k-ft}(1.67)(12 \text{ in/ft})/50 \text{ ksi} = 73.75 \text{ in}^3 (F_v \text{ is the limit stress when fully braced})$

4. Choose a trial section, and also limit the depth to 18 in as instructed:

W18 x 40 has a plastic section modulus of 78.4 in³ and is the most light weight (as indicated by the bold text) in Table 9.1

Include the self weight in the maximum values:

 $w^*_{a-adjusted} = 1.20 \text{ k/ft} + 0.04 \text{ k/ft}$

 $V_{a-adjusted}^* = 1.24 \text{ k/ft}(35 \text{ ft})/2 = 21.7 \text{ k}$

 $M^*_{a-adjusted} = 1.24 \text{ k/ft}(35 \text{ ft})^3/8 = 189.9 \text{ k}$

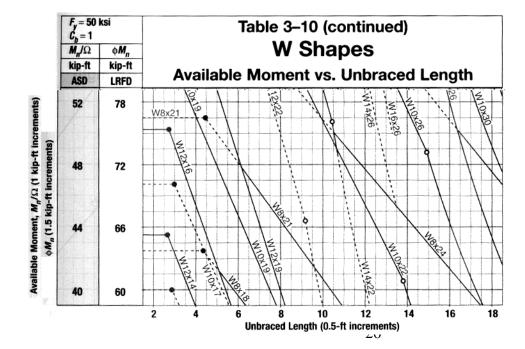
 $Z_{\text{reg/d}} \ge 189.9 \text{ k-ft} (1.67) (12 \text{ in/ft}) / 50 \text{ ksi} = 76.11 \text{ in}^3$ And the Z we have (78.4) is larger than the Z we need (76.11), so OK.

Evaluate shear (is V_a ≤ V₀/Ω): A_w = dt_w so look up section properties for W18 x 40: d = 17.90 in and t_w = 0.315 in

 $V_n/\Omega = 0.6F_{yw}A_w/\Omega = 0.6(50 \text{ ksi})(17.90 \text{ in})(0.315 \text{ in})/1.5 = 112.8 \text{ k}$ which is much larger than 21.7 k, so OK.

9. Evaluate the deflection with respect to the limit stated of L/360 for the live load. (If we knew the **total** load limit we would check that as well). The moment of inertia for the W18 x 40 is needed. I_x = 612 in⁴

 Δ live load limit = 35 ft(12 in/ft)/360 = 1.17 in


 Δ = 5wL⁴/384EI = 5(0.75 k/ft)(35 ft)⁴(12 in/ft)³/384(29 x 10³ ksi)(612 in⁴) = 1.42 in! This is TOO BIG (not less than the limit. Find the moment of inertia needed:

$$I_{req'd} \ge \Delta_{too\ big} (I_{trial})/\Delta_{limit} = 1.42\ in(612\ in^4)/(1.17\ in) = 742.8\ in^4$$

From Table 9.1, a W16 x 45 is larger (by Z), but not the most light weight (efficient), as is W10 x 68, W14 x 53, W18 x 46, (W21 x 44 is too deep) and W18 x 50 is bolded (efficient). (Now look up I's). (In order: $I_x = 586$, 394, 541, 712 and 800 in⁴)

Choose a W18 x 50

A steel beam with a 20 ft span is designed to be simply supported at the ends on columns and to carry a floor system made with open-web steel joists at 4 ft on center. The joists span 28 feet and frame into the beam *from one side only* and have a self weight of 8.5 lb/ft. Use A992 (grade 50) steel and select the most economical wide-flange section for the beam. Floor loads are 50 psf LL and 14.5 psf DL.

Select a A992 W shape flexural member ($F_y = 50$ ksi, $F_u = 65$ ksi) for a beam with distributed loads of 825 lb/ft (dead) and 1300 lb/ft (live) and a live point load at midspan of 3 k using the Available Moment tables. The beam is simply supported, 20 feet long, and braced at the ends and midpoint only ($L_b = 10$ ft.) The beam is a roof beam for an institution without plaster ceilings. (LRFD)

SOLUTION:

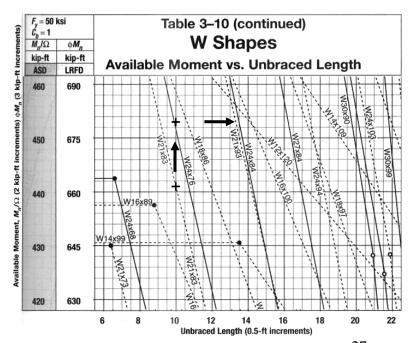
To use the Available Moment tables, the maximum moment required is plotted against the unbraced length. The first solid line with capacity or unbraced length *above* what is needed is the most economical.

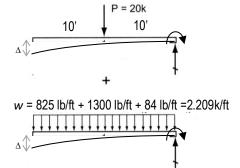
DESIGN LOADS (load factors applied on figure):

$$M_{u} = \frac{wl^{2}}{2} + Pb = \frac{3.07 \frac{k}{ft} (20 ft)^{2}}{2} + 4.8k(10 ft) = 662^{k-ft} \quad V_{u} = wl + P = 3.07 \frac{k}{ft} (20 ft) + 4.8k = 66.2k$$

Plotting 662 k-ft vs. 10 ft lands just on the capacity of the W21x83, but it is dashed (and not the most economical) AND we need to consider the contribution of self weight to the total moment. Choose a *trial* section of W24 x 76. Include the new dead load:

$$M_{u-adjusted}^* = 662^{k-ft} + \frac{1.2(76^{lb}/f_t)(20ft)^2}{2(1000^{lb}/f_t)} 680.2^{k-ft} \qquad V_{u-adjusted}^* = 66.2k + 1.2(0.076^{b}/f_t)(20ft) = 68.0k$$


Replot 680.2 k-ft vs. 10ft, which lands *above* the capacity of the W21x83. We can't look up because the chart ends, but we can look for that capacity with a longer unbraced length. This leads us to a **W24** x **84** as the most economical. (With the additional self weight of 84 - 76 lb/ft = 8 lb/ft, the increase in the *factored* moment is only 1.92 k-ft; therefore, it is still OK.)


Evaluate the shear capacity:

$$\phi_v V_n = \phi_v 0.6 F_{vw} A_w = 1.0(0.6) 50 ksi(24.10 in) 0.47 in = 338.4 k$$
 so yes, 68 k \leq 338.4 k \underline{OK}

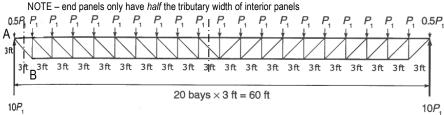
Evaluate the deflection with respect to the limits of L/240 for live (*unfactored*) load and L/180 for total (*unfactored*) load: L/240 = 1 in. and L/180 = 1.33 in.

$$\Delta_{total} = \frac{Pb^2(3l-b)}{6EI} + \frac{wL^4}{24EI} = \frac{3k(10ft)^{12}(3\cdot20-10ft)(12\frac{i\eta_{ft}}{10})^3}{6(30x10^3ksi)2370in^3} + \frac{(2.209\frac{k_{ft}}{10})(20ft)^4(12\frac{i\eta_{ft}}{10})^3}{24(30x10^3ksi)2370in^3} = 0.06 + 0.36 = 0.42in$$

P = 1.6(3k) = 4.8k

w = 1.2(825 lb/ft) + 1.6(1300 lb/ft) = 3.07 k/ft

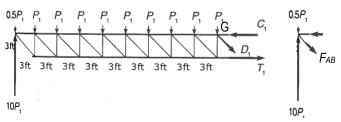
So, Δ LL \leq Δ LL-limit and Δ total \leq Δ total-limit:


 $0.06 \text{ in.} \le 1 \text{ in.}$ and $0.42 \text{ in.} \le 1.33 \text{ in.}$

(This section is so big to accommodate the large bending moment at the cantilever support that it deflects very little.)

.: FINAL SELECTION IS W24x84

A floor is to be supported by trusses spaced at 5 ft. on center and spanning 60 ft. having a dead load of 53 lb/ft² and a live load of 100 lb/ft². With 3 ft.-long panel points, the depth is assumed to be 3 ft with a span-to-depth ratio of 20. With 6 ft.-long panel points, the depth is assumed to be 6 ft with a span-to-depth ratio of 10. Determine the maximum force in a horizontal chord and the maximum force in a web member. Use factored loads. Assume a self weight of 40 lb/ft.


Table 7.2 Computation of Truss Joint Loads tributary widths Floor Factored Total Factored Node-Truss-Area Factored Load area loads Dead Live totoper 1.2 · P_{dead} + P_{dead} P_{live} Load Node Truss Node Load Wdead $1.6 \cdot P_{\text{live}}$ $1.6 \cdot P_{live}$ Spacing Spacing Α $(=w_{dead} \cdot A)$ $(=w_{live} \cdot A)$ $1.2 \cdot P_{\text{dead}}$ (K) (K/ft^2) (K/ft^2) (ft) (ft^2) (K) (K) (K) (#/ft2) (#/ft2) (ft) (K) Truss 3 ft 3.35 + 0.14 = 3.49100 0.100 5 15 0.795 1.50 0.954 2.40 53 0.053 3 deep 6 ft 1.59 3.00 1.908 4.80 6.71 + 0.29 = 7.00100 0.100 30 53 0.053 deep 3 self weight 0.04 k/ft (distributed) $1.2P_{\text{dead}} = 1.2w_{\text{dead}} \cdot tributary \ width = 0.14 \ \text{K}$ $1.2P_{\text{dead}} = 1.2w_{\text{dead}} \cdot tributary \ width = 0.29 \ \text{K}$

<u>FBD 3:</u> Maximum web force will be in the end diagonal (just like maximum shear in a beam)

$$\Sigma F_y = 10P_1 - 0.5P_1 - F_{AB} \cdot \sin 45^\circ = 0$$

 $F_{AB} = 9.5P_1/\sin 45^\circ = 9.5(3.49 \text{ k})/0.707 = 46.9 \text{ k}$

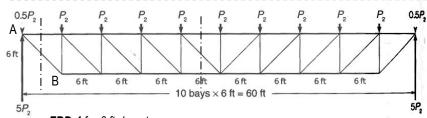
FBD 1 for 3 ft deep truss

FBD 2 of cut just to the left of midspan

FBD 3 of cut just to right of left support

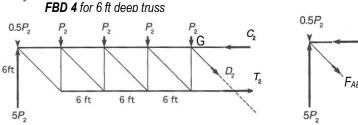
FBD 2: Maximum chord force (top or bottom) will be at midspan

$$\Sigma M_G = 9.5P_1(30^{\dagger}) - P_1(27^{\dagger}) - P_1(24^{\dagger}) - P_1(21^{\dagger}) - P_1(18^{\dagger}) - P_1(15^{\dagger}) - P_1(12^{\dagger}) - P_1(9^{\dagger}) - P_1(6^{\dagger}) - P_1(3^{\dagger}) - T_1(3^{\dagger}) = 0$$

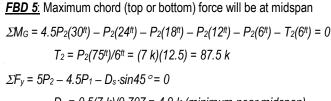

$$T_1 = P_1(150^{\dagger})/3^{\dagger} = (3.49 \text{ k})(50) = 174.5 \text{ k}$$

$$\Sigma F_y = 10P_1 - 9.5P_1 - D_1 \cdot \sin 45^\circ = 0$$

 $D_1 = 0.5(3.49 \text{ k})/0.707 = 2.5 \text{ k}$ (minimum near midspan)


$$\Sigma F_x = -C_1 + T_1 + D_1 \cdot \cos 45^\circ = 0$$

 $C_1 = 176.2 k$


<u>FBD 6:</u> Maximum web force will be in the end diagonal

$$\Sigma F_y = 5P_2 - 0.5P_2 - F_{AB} \cdot \sin 45^\circ = 0$$

 $F_{AB} = 4.5P_2 / \sin 45^\circ = 4.5(7 \text{ k}) / 0.707 = 44.5 \text{ k}$

FBD 5 of cut just to the left of midspan

FBD 6 of cut just to right of left support

$$D_2 = 0.5(7 \text{ k})/0.707 = 4.9 \text{ k}$$
 (minimum near midspan)

$$\Sigma F_x = -C_2 + T_2 + D_2 \cdot \cos 45^\circ = 0$$

 $C_2 = 92.4 k$

Example 7 (pg 339)

(from unfactored loads)

Example 14. Open web steel joists are to be used for a floor with a unit live load of 75 psf $[3.59 \text{ kN/m}^2]$ and a unit dead load of 40 psf $[1.91 \text{ kN/m}^2]$ (not including the joist weight) on a span of 30 ft [9.15 m]. Joists

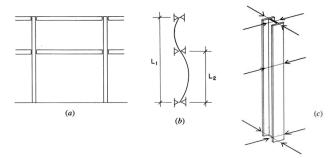

are 2 ft [0.61 m] on center, and deflection is limited to 1/240 of the span under total load and 1/360 of the span under live load only. Determine the lightest possible joist and the lightest joist of least depth possible.

TABLE 9.5 (Continued)

Joist Designation:	18K3	18K5	18K7	20K3	20K5	20K7	22K4	22K6	22K9
Weight (lb/ft):	6.6	7.7	9.0	6.7	8.2	9.3	8.0	8.8	11.3
Span (ft)									
28	347	472	571	387	527	638	516	634	816
	(151)	(199)	(239)	(189)	(248)	(298)	(270)	(328)	(413)
30	301	409	497	337	457	555	448	550	738
	(123)	(161)	(194)	(153)	(201)	(242)	(219)	(266)	(349)
32	264	359	436	295	402	487	393	484	647
	(101)	(132)	(159)	(126)	(165)	(199)	(180)	(219)	(287)

Example 8 (pg 353)

Example 3. Figure 10.5a shows an elevation of the steel framing at the location of an exterior wall. The column is laterally restrained but rotationally free at the top and bottom in both directions. (The end condition is as shown for Case (d) in Figure 10.3.) With respect to the x-axis of the section, the column is laterally unbraced for its full height. However, the existence of the horizontal framing in the wall plane provides lateral bracing with respect to the y-axis of the section; thus, the buckling of the column in this direction takes the form shown in Figure 10.5b. If the column is a W 12×53 of A36 steel, L_1 is 30 ft [9.15 m], and L_2 is 18 ft [5.49 m], what is the maximum factored compression load?

Example 9 (pg 361)

Example 6. Using Table 10.4, select a standard weight steel pipe to carry a dead load of 15 kips [67 kN] and a live load of 26 kips [116 kN] if the unbraced height is 12 ft [3.66 m].

Example 10

Investigate the accepatiblity of a W16 x 67 used as a beam-column under the unfactored loading shown in the figure. It is A992 steel ($F_v = 50 \text{ ksi}$). Assume 25% of the load is dead load with 75% live load.

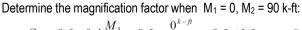
DESIGN LOADS (shown on figure):

Axial load = 1.2(0.25)(350k)+1.6(0.75)(350k)=525k

Moment at joint = 1.2(0.25)(60 k-ft) + 1.6(0.75)(60 k-ft) = 90 k-ft

Determine column capacity and fraction to choose the appropriate interaction equation:

$$\frac{kL}{r_x} = \frac{15ft(12^{\frac{in}{f}})}{6.96in} = 25.9 \text{ and } \frac{kL}{r_y} = \frac{15ft(12^{\frac{in}{f}})}{2.46in} = 73 \text{ (governs)}$$


$$P_c = \phi_c P_n = \phi_c F_{cr} A_g = (30.5ksi)19.7in^2 = 600.85k$$

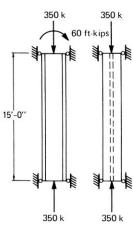
$$\frac{P_{r}}{P_{c}} = \frac{525k}{600.85k} = 0.87 > 0.2 \quad \text{so use} \quad \frac{P_{u}}{\phi_{c}P_{n}} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_{b}M_{nx}} + \frac{M_{uy}}{\phi_{b}M_{ny}} \right) \leq 1.0$$

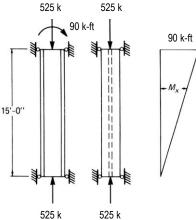
There is no bending about the y axis, so that term will not have any values.

Determine the bending moment capacity in the x direction:

The unbraced length to use the full plastic moment (L_p) is listed as 8.69 ft, and we are over that so of we don't want to determine it from formula, we can find the beam in the Available Moment vs. Unbraced Length tables. The value of ϕM_n at L_b =15 ft is 422 k-ft.

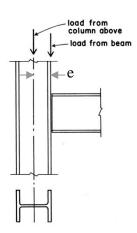
$$C_m = 0.6 - 0.4 \frac{M_1}{M_2} = 0.6 - \frac{0^{k-ft}}{90^{k-ft}} = 0.6 \le 1.0$$


$$P_{e1} = \frac{\pi^2 EA}{\left(\frac{Kl}{r}\right)^2} = \frac{\pi^2 (30x10^3 ksi)19.7 in^2}{\left(25.9\right)^2} = 8,695.4k$$


$$B_1 = \frac{C_m}{1 - (P_n/P_{s1})} = \frac{0.6}{1 - (525k/8695.4k)} = 0.64 \ge 1.0 \quad \text{USE 1.0} \quad \text{Mu} = (1)90 \text{ k-fi}$$

Finally, determine the interaction value:

$$\frac{P_u}{\phi_c P_n} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}} \right) = 0.87 + \frac{8}{9} \left(\frac{90^{k-ft}}{422^{k-ft}} \right) = 1.06 \le 1.0$$
 This is **NOT OK**. (and outside error tolerance). The section should be larger.


The section should be larger.

Example 11 (pg 371)

Example 7. It is desired to use a 10-in. W shape for a column in a situation such as that shown in Figure 10.7. The factored axial load from above on the column is 175 kips [778 kN], and the factored beam load at the column face is 35 kips [156 kN]. The column has an unbraced height of 16 ft [4.88 m] and a K factor of 1.0. Select a trial section for the column. Evaluate the trial W10x45 chosen in the text of A36 steel with d = 10.1 in and $\phi_b M_n = 133.4$ k-ft (16 ft unbraced length).

Example 12

10.5 Using the AISC framed beam connection bolt shear in Table 7-1, determine the shear adequacy of the connection shown in Figure 10.28. What thickness and angle length are

required? Also determine the bearing capacity of the wide flange sections.

Factored end beam reaction = 90 k.

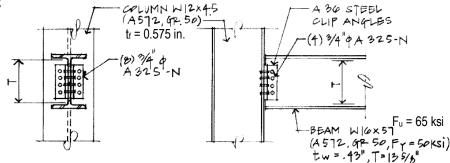


Figure 10.28 Typical beam-column connection.

10.2 The butt splice shown in Figure 10.22 uses two $8 \times 3\%$ " plates to "sandwich" in the $8 \times 1\%$ " plates being joined. Four 7% % A325-SC bolts are used on both sides of the splice. Assuming A36 steel and standard round holes, determine the allowable capacity of the connection.

SOLUTION:

Shear, bearing and net tension will be checked to determine the critical conditions that governs the capacity of the connection. (The edge distance to the holes is presumed to be adequate.)

Shear: Using the AISC available shear in Table 7-3 (Group A):

$$\phi R_n = 26.4 \text{ k/bolt x 4 bolts} = 105.6 \text{ k}$$

Bearing: Using the AISC available bearing in Table 7-4:

There are 4 bolts bearing on the center (1/2") plate, while there are 4 bolts bearing on a total width of two sandwich plates (3/4") total). The thinner bearing width will govern. Assume 3 in. spacing (center to center) of bolts. For A36 steel, $F_u = 58$ ksi.

$$\phi R_0 = 91.4 \text{ k/bolt/in. x } 0.5 \text{ in. x } 4 \text{ bolts} = 182.8 \text{ k}$$

Tension: The center plate is critical, again, because its thickness is less than the combined thicknesses of the two outer plates. We must consider tension yielding and tension rupture:

$$\phi R_n = \phi F_v A_g$$
 and $\phi R_n = \phi F_u A_e$ where $A_e = A_{net} U$

$$A_g = 8 \text{ in. } x \frac{1}{2} \text{ in.} = 4 \text{ in}^2$$

The holes are considered 1/8 in. larger than the nominal bolt diameter = 7/8 + 1/8 = 1 in.

$$A_n = (8 \text{ in.} - 2 \text{ holes } x \text{ 1 in.}) x \frac{1}{2} \text{ in.} = 3 \text{ in}^2$$

The whole cross section sees tension, so the shear lag factor U = 1

$$\phi F_v A_q = 0.9 \times 36 \text{ ksi } \times 4 \text{ in}^2 = 129.6 \text{ k}$$

$$\phi F_u A_e = 0.75 \text{ x } 58 \text{ ksi x } (1) \text{ x } 3 \text{ in}^2 = 130.5 \text{ k}$$

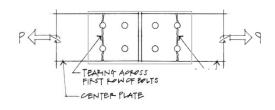
Block Shear Rupture: It is possible for the center plate to rip away from the sandwich plates leaving the block (shown hatched) behind:

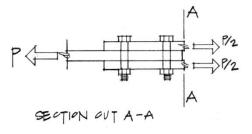
$$\phi R_n = \phi(0.6F_u A_{nv} + U_{bs} F_u A_{nt}) \le \phi(0.6F_v A_{gv} + U_{bs} F_u A_{nt})$$

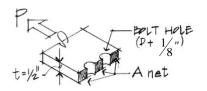
where A_{nv} is the area resisting shear, A_{nt} is the area resisting tension, A_{gv} is the gross area resisting shear, and $U_{bs} = 1$ when the tensile stress is uniform.

$$A_{qv} = (4 + 2 \text{ in.}) \times \frac{1}{2} \text{ in.} = 3 \text{ in}^2$$

$$A_{nv} = A_{gv} - 1 \frac{1}{2}$$
 holes area = 3 in² - 1.5 x 1 in. x $\frac{1}{2}$ in. = 2.25 in²

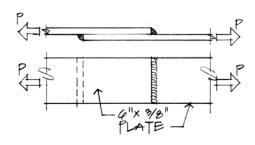

$$A_{nt}$$
 = 3.5 in. x t – 1 holes = 3.5 in. x $\frac{1}{2}$ in – 1 x 1 in. x $\frac{1}{2}$ in. = 1.25 in²


$$\phi(0.6F_uA_{nv} + U_{bs}F_uA_{nt}) = 0.75 \text{ x} (0.6 \text{ x} 58 \text{ ksi x} 2.25 \text{ in}^2 + 1 \text{ x} 58 \text{ ksi x} 1.25 \text{ in}^2) = 113.1 \text{ k}$$


$$\phi(0.6F_yA_{gv} + U_{bs}F_uA_{nt}) = 0.75 \text{ x} (0.6 \text{ x} 36 \text{ ksi x} 3 \text{ in}^2 + 1 \text{ x} 58 \text{ ksi x} 1.25 \text{ in}^2) = 103.0 \text{ k}$$

The maximum connection capacity is governed by block shear rupture.

$$\phi R_n = 103.0 \text{ k}$$



4 in. 2 in.

10.9 Determine the maximum load carrying capacity of this lap joint., assuming A36 steel with E60XX electrodes.

Example 15

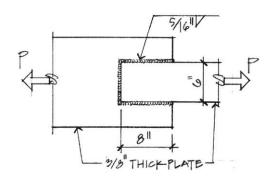
10.7 Determine the capacity of the connection in Figure 10.44 assuming A36 steel with E70XX electrodes.

Solution:

Capacity of weld:

For a $\frac{5}{16}$ " fillet weld, $\phi S = 6.96$ k/in

Weld length = 22"


Weld capacity = $22'' \times 6.96$ k/in = 153.1 k

Capacity of plate: $0.9 \times 36 \text{ k/in}^2 \times 3/8'' \times 6'' = 72.9 \text{ k}$

$$\phi P_n = \phi F_y A_g \quad \phi = 0.9$$

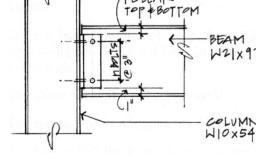
Plate capacity = $0.9 \times 36 \text{ k/in}^2 \times 3/8'' \times 6'' = 72.9 \text{ k}$

 \therefore Plate capacity governs, $P_{\text{allow}} = 72.9 \text{ k}$

The weld size used is obviously too strong. What size, then, can the weld be reduced to so that the weld strength is more compatible to the plate capacity? To make the weld capacity \approx plate capacity:

 $22'' \times \text{(weld capacity per in.)} = 72.9 \text{ k}$

Weld capacity per inch = $\frac{72.9 \text{ k}}{22 \text{ in.}}$ – 3.31 k/in.


From Available Strength table, use 3/16'' weld $(\phi S = 4.18 \text{ k/in.})$

Minimum size fillet = $\frac{3}{16}$ " based on a $\frac{3}{8}$ " thick plate.

The steel used in the connection and beams is A992 with $F_y = 50 \text{ ksi}$, and $F_u = 65 \text{ ksi}$. Using A490-N bolt material, determine the maximum capacity of the connection based on shear in the bolts, bearing in all materials and pick the number of bolts and angle length (not staggered). Use A36 steel for the angles.

W21x93: d = 21.62 in, $t_w = 0.58$ in, $t_f = 0.93$ in

W10x54: $t_f = 0.615$ in

SOLUTION:

The maximum length the angles can be depends on how it fits between the top and bottom flange with some clearance allowed for the fillet to the flange, and getting an air wrench in to tighten the bolts. This example uses 1" of clearance:

Available length = beam depth – both flange thicknesses – 1" clearance at top & 1" at bottom = 21.62 in - 2(0.93 in) - 2(1 in) = 17.76 in.

With the spaced at 3 in. and 1 $\frac{1}{4}$ in. end lengths (each end), the maximum number of bolts can be determined:

Available length \geq 1.25 in. + 1.25 in. + 3 in. x (number of bolts – 1) number of bolts \leq (17.76 in – 2.5 in. - (-3 in.))/3 in. = 6.1, so 6 bolts.

It is helpful to have the All-bolted Double-Angle Connection Tables 10-1. They are available for $\frac{3}{4}$ ", $\frac{7}{8}$ ", and 1" bolt diameters and list angle thicknesses of $\frac{1}{4}$ ", $\frac{5}{16}$ ", $\frac{3}{8}$ ", and $\frac{1}{2}$ ". Increasing the angle thickness is likely to increase the angle strength, although the limit states include shear yielding of the angles, shear rupture of the angles, and block shear rupture of the angles.

Beam	<i>F_y</i> = 50 ksi <i>F_u</i> = 65 ksi	olig	Ta All-B e	ble 10 olted	•			•	jle	ed Sty (H	⁷ /8	-in.
Angle	$F_y = 36 \text{ ksi}$ $F_u = 58 \text{ ksi}$	2	4200) Upont King	Con:	nec Angle			ngth, k	ips	n 9	Bol	ts
	6 Rows	22.16.1	1 12/41/4				Ang	gle Thi	ckness	, in.	earl i	
W4	0, 36, 33, 30, 27,	Bolt Group	Thread Cond.	Hole Type	1	/4	5/	16	3	/8	SS 51	2
	24, 21	агоир	Collu.	турс	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	Sylven	- 1 · ·	N and	STD	98.6	148	123	185	148	222	195	292
	Varies t		X	STD	98.6	148	123	185	148	222	197	296
			SC	STD	98.6	148	106	159	106	159	106	159
		Group A	Class A	OVS	90.1	135	90.1	135	90.1	135	90.1	135
F			Class A	SSLT	97.3	146	106	159	106	159	106	159
	9		SC Class B	STD	98.6	148	123	185	148	222	176	264
				OVS	93.5	140	117	175	140	210	150	225
	- 3 max			SSLT	97.3	146	122	182	146	219	176	264
31	TT**	\$\$7.7.1 7.7.	N	STD	98.6	148	123	185	148	222	197	296
1	1000		X	STD	98.6	148	123	185	148	222	197	296
AB3 = 15		881	SC	STD	98.6	148	123	185	133	199	133	199
8		Group		OVS	93.5	140	113	169	113	169	113	169
3	CA.	В	Class A	SSLT	97.3	146	122	182	133	199	133	199
		[SC	STD	98.6	148	123	185	148	222	197	296
			Class B	OVS	93.5	140	117	175	140	210	187	281
		12	CidSS B	SSLT	97.3	146	122	182	146	219	195	292

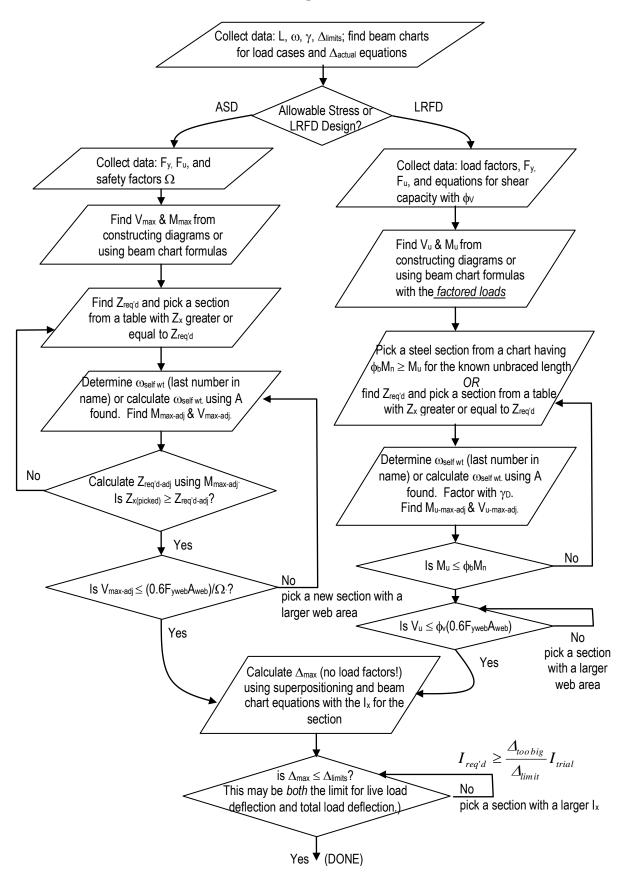
For these diameters, the available **shear** (double) from Table 7-1 for 6 bolts is (6)45.1 k/bolt = 270.6 kips, (6)61.3 k/bolt = 367.8 kips, and (6)80.1 k/bolt = 480.6 kips.

Tables 10-1 (not all provided here) list a bolt and angle available strength of 271 kips for the ³/₄" bolts, 296 kips for the 7/8" bolts, and 281 kips for the 1" bolts. It appears that increasing the bolt diameter to 1" will not gain additional load. Use 7/8" bolts.

$$\phi R_n = 367.8$$
 kips for double shear of 7/8" bolts $\phi R_n = 296$ kips for limit state in angles

We also need to evaluate **bearing** of bolts on the beam web, and column flange where there are bolt holes. Table 7-4 provides available bearing strength for the material type, bolt diameter, hole type, and spacing per inch of material thicknesses.

a) Bearing for beam web: There are 6 bolt holes through the beam web. This is typically the critical bearing limit value because there are two angle legs that resist bolt bearing and twice as many bolt holes to the column. The material is A992 (F_u = 65 ksi), 0.58" thick, with 7/8" bolt diameters at 3 in. spacing.


$$\phi R_n = 6 \text{ bolts} \cdot (102 \text{ k/bolt/inch}) \cdot (0.58 \text{ in}) = 355.0 \text{ kips}$$

b) Bearing for column flange: There are 12 bolt holes through the column. The material is A992 $(F_u = 65 \text{ ksi}), 0.615$ " thick, with 1" bolt diameters.

$$\phi R_n = 12 \text{ bolts} \cdot (102 \text{ k/bolt/inch}) \cdot (0.615 \text{ in}) = 752.8 \text{ kips}$$

Although, the bearing in the beam web is the smallest at 355 kips, with the shear on the bolts even smaller at 324.6 kips, the maximum capacity for the simple-shear connector is 296 kips limited by the critical capacity of the angles.

Beam Design Flow Chart

Available Critical Stress, $\phi_c F_{cr}$, for Compression Members, ksi ($F_y = 36$ ksi and $\phi_c = 0.90$)

KL/r	$\phi_c F_{cr}$								
1	32.4	41	29.7	81	22.9	121	15.0	161	8.72
2	32.4	42	29.5	82	22.7	122	14.8	162	8.61
3	32.4	43	29.4	83	22.5	123	14.6	163	8.50
4	32.4	44	29.3	84	22.3	124	14.4	164	8.40
5	32.4	45	29.1	85	22.1	125	14.2	165	8.30
6	32.3	46	29.0	86	22.0	126	14.0	166	8.20
7	32.3	47	28.8	87	21.8	127	13.9	167	8.10
8	32.3	48	28.7	88	21.6	128	13.7	168	8.00
9	32.3	49	28.6	89	21.4	129	13.5	169	7.91
10	32.2	50	28.4	90	21.2	130	13.3	170	7.82
11	32.2	51	28.3	91	21.0	131	13.1	171	7.73
12	32.2	52	28.1	92	20.8	132	12.9	172	7.64
13	32.1	53	27.9	93	20.5	133	12.8	173	7.55
14	32.1	54	27.8	94	20.3	134	12.6	174	7.46
15	32.0	55	27.6	95	20.1	135	12.4	175	7.38
16	32.0	56	27.5	96	19.9	136	12.2	176	7.29
17	31.9	57	27.3	97	19.7	137	12.0	177	7.21
18	31.9	58	27.1	98	19.5	138	11.9	178	7.13
19	31.8	59	27.0	99	19.3	139	11.7	179	7.05
20	31.7	60	26.8	100	19.1	140	11.5	180	6.97
21	31.7	61	26.6	101	18.9	141	11.4	181	6.90
22	31.6	62	26.5	102	18.7	142	11.2	182	6.82
23	31.5	63	26.3	103	18.5	143	11.0	183	6.75
24	31.4	64	26.1	104	18.3	144	10.9	184	6.67
25	31.4	65	25.9	105	18.1	145	10.7	185	6.60
26	31.3	66	25.8	106	17.9	146	10.6	186	6.53
27	31.2	67	25.6	107	17.7	147	10.5	187	6.46
28	31.1	68	25.4	108	17.5	148	10.3	188	6.39
29	31.0	69	25.2	109	17.3	149	10.2	189	6.32
30	30.9	70	25.0	110	17.1	150	10.0	190	6.26
31	30.8	71	24.8	111	16.9	151	9.91	191	6.19
32	30.7	72	24.7	112	16.7	152	9.78	192	6.13
33	30.6	73	24.5	113	16.5	153	9.65	193	6.06
34	30.5	74	24.3	114	16.3	154	9.53	194	6.00
35	30.4	75	24.1	115	16.2	155	9.40	195	5.94
36	30.3	76	23.9	116	16.0	156	9.28	196	5.88
37	30.1	77	23.7	117	15.8	157	9.17	197	5.82
38	30.0	78	23.5	118	15.6	158	9.05	198	5.76
39	29.9	79	23.3	119	15.4	159	8.94	199	5.70
40	29.8	80	23.1	120	15.2	160	8.82	200	5.65

Available Critical Stress, $\phi_c F_{cr}$, for Compression Members, ksi (F_y = 50 ksi and ϕ_c = 0.90)

KL/r	$\phi_c F_{cr}$								
1	45.0	41	39.8	81	27.9	121	15.4	161	8.72
2	45.0	42	39.6	82	27.5	122	15.2	162	8.61
3	45.0	43	39.3	83	27.2	123	14.9	163	8.50
4	44.9	44	39.1	84	26.9	124	14.7	164	8.40
5	44.9	45	38.8	85	26.5	125	14.5	165	8.30
6	44.9	46	38.5	86	26.2	126	14.2	166	8.20
7	44.8	47	38.3	87	25.9	127	14.0	167	8.10
8	44.8	48	38.0	88	25.5	128	13.8	168	8.00
9	44.7	49	37.8	89	25.2	129	13.6	169	7.91
10	44.7	50	37.5	90	24.9	130	13.4	170	7.82
11	44.6	51	37.2	91	24.6	131	13.2	171	7.73
12	44.5	52	36.9	92	24.2	132	13.0	172	7.64
13	44.4	53	36.6	93	23.9	133	12.8	173	7.55
14	44.4	54	36.4	94	23.6	134	12.6	174	7.46
15	44.3	55	36.1	95	23.3	135	12.4	175	7.38
16	44.2	56	35.8	96	22.9	136	12.2	176	7.29
17	44.1	57	35.5	97	22.6	137	12.0	177	7.21
18	43.9	58	35.2	98	22.3	138	11.9	178	7.13
19	43.8	59	34.9	99	22.0	139	11.7	179	7.05
20	43.7	60	34.6	100	21.7	140	11.5	180	6.97
21	43.6	61	34.3	101	21.3	141	11.4	181	6.90
22	43.4	62	34.0	102	21.0	142	11.2	182	6.82
23	43.3	63	33.7	103	20.7	143	11.0	183	6.75
24	43.1	64	33.4	104	20.4	144	10.9	184	6.67
25	43.0	65	33.0	105	20.1	145	10.7	185	6.60
26	42.8	66	32.7	106	19.8	146	10.6	186	6.53
27	42.7	67	32.4	107	19.5	147	10.5	187	6.46
28	42.5	68	32.1	108	19.2	148	10.3	188	6.39
29	42.3	69	31.8	109	18.9	149	10.2	189	6.32
30	42.1	70	31.4	110	18.6	150	10.0	190	6.26
31	41.9	71	31.1	111	18.3	151	9.91	191	6.19
32	41.8	72	30.8	112	18.0	152	9.78	192	6.13
33	41.6	73	30.5	113	17.7	153	9.65	193	6.06
34	41.4	74	30.2	114	17.4	154	9.53	194	6.00
35	41.1	75	29.8	115	17.1	155	9.40	195	5.94
36	40.9	76	29.5	116	16.8	156	9.28	196	5.88
37	40.7	77	29.2	117	16.5	157	9.17	197	5.82
38	40.5	78	28.8	118	16.2	158	9.05	198	5.76
39	40.3	79	28.5	119	16.0	159	8.94	199	5.70
40	40.0	80	28.2	120	15.7	160	8.82	200	5.65

Bolt Strength Tables

Table 7-1 Available Shear Strength of Bolts, kips

No	minal Bolt	Diamete	r, <i>d</i> , in.	.799	5	/8	3	/4	7	/8	ohusi	1		
	Nominal B	olt Area	in.2	V 22	0.3	107	0.4	142	0.6	601	0.	785		
ASTM	Thread	F_{nv}/Ω (ksi)	φ <i>F_{nv}</i> (ksi)	Load-	r _n /Ω	φr _n	r _n /Ω	φrn	r _n /Ω	φr _n	r _n /Ω	φr _n		
Desig.	Cond.	ASD	LRFD	ing	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFC		
Group	Chigago	27.0	40.5	S	8.29 16.6	12.4 24.9	11.9 23.9	17.9 35.8	16.2 32.5	24.3 48.7	21.2 42.4	31.8 63.6		
184,8-8	ò∔, X . gq	34.0	51.0	S D	10.4 20.9	15.7 31.3	15.0 30.1	22.5 45.1	20.4 40.9	30.7 61.3	26.7 53.4	40.0 80.1		
Group	N (271)	34.0	51.0	S	10.4 20.9	15.7 31.3	15.0 30.1	22.5 45.1	20.4 40.9	30.7 61.3	26.7 53.4	40.0 80.1		
pm B) mg	ers, Des	42.0	63.0	D	12.9 25.8	19.3 38.7	18.6 37.1	27.8 55.7	25.2 50.5	37.9 75.7	33.0 65.9	49.5 98.9		
A307	A. Tanit	13.5	20.3	S D	4.14 8.29	6.23 12.5	5.97 11.9	8.97 17.9	8.11 16.2	12.2 24.4	10.6 21.2	15.9 31.9		
o n eding	minal Bolt	Diamete	er, <i>d</i> , in.	ons to	nanect	/8 gni	Fram	y grais	" .(`	3/8	n, D.	1/2		
	Nominal B	olt Area	in.2	1-08 0	0.9	94	atalae	23	Man 4	48	aat S	77		
ASTM	Thread	F_{nv}/Ω (ksi)	φ <i>F_{nv}</i> (ksi)	Load-	r_n/Ω	φ r _n	r_n/Ω ϕr_n	r _n /Ω	r_n/Ω ϕr_n	φr _n r _n	r _n /Ω	φ r _n	r _n /Ω	φr _n
Desig.	Cond.	ASD	LRFD	ing	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
Group	N	27.0	40.5	S D	26.8 53.7	40.3 80.5	33.2 66.4	49.8 99.6	40.0 79.9	59.9 120	47.8 95.6	71.7 143		
A	x	34.0	51.0	S D	33.8 67.6	50.7 101	41.8 83.6	62.7 125	50.3 101	75.5 151	60.2 120	90.3 181		
Group	N	34.0	51.0	S D	33.8 67.6	50.7 101	41.8 83.6	62.7 125	50.3 101	75.5 151	60.2 120	90.3 181		
В	. X	42.0	63.0	S D	41.7 83.5	62.6 125	51.7 103	77.5 155	62.2 124	93.2 186	74.3 149	112 223		
A307	-	13.5	20.3	S D	13.4 26.8	20.2 40.4	16.6 33.2	25.0 49.9	20.0 40.0	30.0 60.1	23.9 47.8	35.9 71.9		
ASD	LRFD	For end	loaded co	onnections	greater t	han 38 in.	, see AISO	Specific	ation Table	e J3.2 foo	otnote b.			
$\Omega = 2.00$	ф = 0.75	1												

Table 7-2 Available Tensile Strength of Bolts, kips

Nominal Bo	It Diameter,	d, in.	5,	8	3	/4	7	/8		1
Nominal	Bolt Area, in	.2	0.3	07	0.4	442	0.6	501	0.	785
ASTM Desig.	F_{nt}/Ω (ksi)	φ <i>F_{nt}</i> (ksi)	r_n/Ω	φ r _n	r_n/Ω	φr _n	r_n/Ω	φ r _n	r_n/Ω	φ r _n
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
Group A Group B A307	45.0 56.5 22.5	67.5 84.8 33.8	13.8 17.3 6.90	20.7 26.0 10.4	19.9 25.0 9.94	29.8 37.4 14.9	27.1 34.0 13.5	40.6 51.0 20.3	35.3 44.4 17.7	53.0 66.6 26.5
Nominal Bo	It Diameter,	<i>d</i> , in. 6.0	2 8741	/8	21 1	1/4	3,85 1	3/8	145-1	1/2
Nominal	Nominal Bolt Area, in. ²		0.9	994	1	.23	1.	48	- 1	.77
ASTM Desig	F _{nt} /Ω (ksi)	φ <i>F_{nt}</i> (ksi)	r_n/Ω	φ r _n	r _n /Ω	r_n/Ω ϕr_n		φ r _n	r _n /Ω	φr _n
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
Group A Group B A307	45.0 56.5 22.5	67.5 84.8 33.8	44.7 56.2 22.4	67.1 84.2 33.5	55.2 69.3 27.6	82.8 104 41.4	66.8 83.9 33.4	100 126 50.1	79.5 99.8 39.8	119 150 59.6
ASD	LRFD	P\$1102121.3	Hoa H de	to man	Total Control	Design Design	3 11 2 20 20 10	Loading	99	yT sloH
$\Omega = 2.00$	$\phi = 0.75$	85								

	S	Slip-Critical Connections	ij	S S	Critical Connect	ctio	ns	Group B	다 다 다
	4 <u>5</u>	Available Shear Strength, kips (Class A Faying Surface, μ = 0.30)	le Sh Fayin	ear S ig Sur	trengt face,	th, kip μ = 0.		A490, A490M F2280 A354 Grade BD	30M de BC
-	100		5	Group B Bolts	lts			Bott	12
TO AND TO		The state of the s	924	Non	Nominal Bolt Diameter, d, in.	Diameter,	d, in.	2 2 1	No.
E	10-10	9/9		Color All S	3/4	2 1 1 1 2	8/2	Ī	-
50		- Nake		Minimum	Minimum Group B Bolt Pretension, kips	Bolt Preter	ısion, kip		
Hole Type	Loading	24	4		35	7	49	9	64
		Ω/"	φľn	Ω/u ₁	φŁ	Ω/uJ	φŁυ	Ω/uJ	of,
i lo		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
STD/SSLT	s a	5.42	8.14	7.91	11.9	11.1	16.6	14.5	21.7
OVS/SSLP	sc	4.62	6.92	6.74	10.1	9.44	14.1	12.3	18.4
TST	S	3.80	5.70	5.54	8.31	7.76	11.6	10.1	15.2
		00.7	<u>+</u>	Non	Nominal Bolt Diameter, d. in.	Diameter,	d. in.	50.0	90.4
		1000	11/8	10000	11/4		13/8	60	11/2
l les		S SA		Minimum	Minimum Group B Bolt Pretension, kips	Bolt Preter	sion, kip		
Hole Type	Loading	80	0	1000	102	800	121	i	148
3 (5)		υ/u	φŁu	Ω/″3	φľ	Ω/uJ	or _n	r _n /Ω	φŁ
9		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
STD/SSLT	S	18.1	27.1	23.1	34.6	27.3	41.0	33.4	50.2
		15.4	23.1	19.6	29.4	23.3	34.9	28.5	426
0VS/SSLP	0	30.8	46.1	39.3	58.8	46.6	69.7	57.0	85.3
TST	s a	12.7	19.0	16.2	24.2	19.2	28.7	23.4	35.1
STD = standard hole OVS = oversized hole	d hole ed hole	V 50 19			15/200	S = single shear D = double shear	shear e shear	n lu	70
SSLT = short-slotted hole transverse to the line of for SSLP = short-slotted hole parallel to the line of force LSL = long-slotted hole transverse or parallel to the	 short-slotted hole transverse to the line of force short-slotted hole parallel to the line of force long-slotted hole transverse or parallel to the line of force 	sverse to that allel to the li	e line of force ne of force rallel to th	orce e line of fo	ice				
Hole Type	ASD	LRFD	Note: Slip	o-critical bol	t values assi	ume no mor	than one f	Note: Slip-critical bolt values assume no more than one filler has been provided	provide
STD and SSLT	$\Omega = 1.50$	$\phi = 1.00$	See AISC	Specification	or botts have been added to distribute loads in the fillers. See AISC Specification Sections J3.8 and J5 for provision	13.8 and J5	or provision	or bolls ridge been added to distribute loads in the illiers. See AISC <i>Specification</i> Sections J3.8 and J5 for provisions when fillers	S
OVS and SSLP	$\Omega = 1.76$	$\phi = 0.85$	are present.	ent.	rfaces, mult	ink the tabu	lated availa	are present. For Class B faving surfaces multiply the tabulated available strength by 1.67.	79 L vc
5	Ω = 2.14	Φ = 0.70	5	D idying	llavoo, mer	ply ure man	diou true	Old outsings.	

Bolts		Table 7-3 Slip-Critical Connections	ritic	Table 7-3	-3 onne	ctio	ns		
A325, A325M F1858 A354 Grade BC	٦ <u>۵</u>	Available Shear Strength, kips (Class A Faying Surface, μ = 0.30)	ole Sh Fayir	ear S ng Sur	treng face,	th, kip	30)		
A449	William Indian	11.00.00	-5	Group A Bolts	olts				
BBI DO	PON ROLL NO.	2 0 8	SAN.0	Non	ninal Bolt	Nominal Bolt Diameter, d, in	ď, in.		8
alto EA		6	9/9		3/4		8/,8		-
Hele Tone	Localina	1884		Minimum	Group A	Bolt Preter	Minimum Group A Bolt Pretension, kips		
edi alou	Loading	T. Harris	19		28	."	39	4,	21
0.000		r_n/Ω	φŁu	Ω/uJ	φŁ	Ω/u ₁	φľ	r,/Ω	or,
12	1888	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
STD/SSLT	s a	4.29	6.44	6.33	9.49	17.6	13.2	11.5	17.3
OVS/SSLP	s c	3.66	5.47	5.39	8.07	7.51	11.2	9.82	14.7
ısı	s c	3.01	4.51	4.44	6.64	6.18	9.25	8.08	12.1
100		N. C.		Non	Nominal Bolt Diameter,	Diameter,	d, in.	101	
100	0.0	-	11/8	-	11/4	8	13/8	-	11/2
10-11-11	Hard Street	0.386.0		Minimum	Group A	Bolt Preter	Minimum Group A Bolt Pretension, kips		
adkı alou	Loading	G.	99		11	35	82	=	103
F		Ω/″	φŁυ	Ω/uJ	φľn	ς/Ω	φľn	r _n /Ω	or _n
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
STD/SSLT	s o	12.7	19.0	16.0	24.1	19.2	28.8	23.3	34.9
OVS/SSLP	s o	10.8	16.1	13.7	20.5	16.4	24.5	19.8	29.7
TST	s a	8.87	13.3	11.2	16.8	13.5	20.2	16.3	24.4
STD = standard hole OVS = oversized hole SSLT = short-slotted h SSLP = short-slotted h LSL = long-slotted hc	= standard hole = oversized hole = short-slotted hole = short-slotted hole transverse to the line of force = short-slotted hole parallel to the line of force = long-slotted hole transverse or parallel to the line of force	sverse to that lied to the lie	e line of fc ne of force rallel to the	orce	92	S = single shear D = double shear	shear e shear		8 8 -
Hole Type	ASD	LRFD	Note: Slip	-critical bolt	values assu	ume no more	Note: Slip-critical bolt values assume no more than one filler has been provided	ler has been	provided
STD and SSLT	$\Omega = 1.50$	$\phi = 1.00$	See AISC	ave been ad Specificatio	need to distri n Sections J	or boits have been added to distribute loads in the fillers. See AISC Specification Sections J3.8 and J5 for provision	or botts nave been added to distribute loads in the fillers. See AISC <i>Specification</i> Sections J3.8 and J5 for provisions when fillers	when fillers	"
OVS and SSLP	$\Omega = 1.76$	$\phi = 0.85$	are present.	int. R faving sur	faces multi	In the tahul	are present. For Class 8 favino surfaces multiply the tabulated available strenoth by 1.67	la etranoth h	w 1 67
TST	$\Omega = 2.14$	$\phi = 0.70$	1	and Similar	Ideora, mars	priy uno uno	dibu avalua	on original	

SSLP 5f _B 3f _A f _B f _B 1 STD Spacing, s, in. 4SD LRFD ASD ASD ASD				ž	kips/in. thickness	thick	ness				
Spacing, f _{in} ksi 5_{i8} 3_{i4} 7_{i8}						Nom	inal Bolt I	Diameter,	d, in.		
22/3 db 58 34.1 51.1 41.3 6.70 ϕf_n $f_n f \Omega$ ϕf_n		Bolt	-		2/8	St qsorg	3/4		8/2		-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		s, in.		Γη/Ω	orn	Γ _n /Ω	or _n	Ω/"J	or _n	ς/ _n /Ω	or _n
$2^2/3$ db 58 34.1 51.1 41.3 62.0 48.6 72.9 55.8 8 3 in. 56 38.2 57.3 46.3 69.5 54.4 81.7 62.6 9 22/3 db 66 38.2 57.3 46.3 39.0 58.5 47.1 67.7 52.8 6.5 91.4 67.4 11 22/3 db 66 30.9 46.3 39.0 58.5 47.1 70.7 52.8 75.6 17 70.7 52.8 75.6 17 70.7 52.8 75.1 70.7 52.8 75.1 70.7 52.8 77.1 70.7 52.8 77.1 70.7 52.8 77.1 70.7 52.8 77.1 70.7 52.8 77.1 70.7 52.8 77.1 70.7 52.8 77.1 70.7 52.8 77.3 52.8 87.3 60.9 91.4 67.7 47.3 47.2 78.3 60.9 91.4 60.9			9.6	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
3 in. 55 40.0 50.2 $\frac{2}{3}$ 50.2 $\frac{2}{3}$ 60.3		22/3 db	28	34.1	51.1	41.3	62.0	48.6	72.9	55.8	83.7
22/3 db 65 48.8 73.1 58.5 87.8 68.3 102 75.6 17 3 in. 65 48.8 73.1 58.5 87.8 68.3 102 75.6 17 22/3 db 65 33.3 50.9 46.3 39.0 58.2 42.1 63.1 47.1 52.8 3 in. 65 48.8 73.1 58.5 87.8 68.3 102 65.8 65.3 10.2 65.8 65.3 10.2 65.8 65.3 10.2 65.8 65.3 10.2 65.8 65.3 10.2 65.8 65.3 10.2 65.3 49.3 65.3 10.2 65.3 49.3 65.3 10.2 65.3 49.3 65.3 10.2 65.3 49.3 65.3 10.2 65.3 49.3 65.3 10.2 65.		2 in	28	43.5	65.3	52.2	78.3	6.09	91.4	67.4	101
2 2 /3 2 /6 6 /5	1	1	65	48.8	73.1	58.5	87.8	68.3	102	75.6	113
3in. 58 43.5 65.3 52.2 78.3 60.9 91.4 58.7 65.8 2 $\ell_3 a d_b$ 56 3.3 58.5 87.8 68.3 102 65.8 49.3 65.8 49.3 102 65.8 49.3 65.8 49.3 65.3 40.3 65.2 44.2 65.3 44.2 65.8 49.3 65.8 49.3 65.3 44.2 65.3 49.3 65.3 44.2 65.3 49.3 65.3 44.2 65.3 45.3 65.9 91.4 60.9		22/3 db	92 93	30.9	41.3	34.8	52.2	42.1	63.1	47.1 52.8	70.7
	1	3 in.	58 65	43.5	65.3	52.2	78.3	60.9	91.4	58.7	88.1
3 in. 58 43.5 65.3 52.2 78.3 60.9 91.4 60.9 18 $2^{2/3}$ d_b 56 48.8 73.1 58.5 87.8 60.9 91.4 60.9 91.8 $2^{2/3}$ d_b 65 4.88 73.1 58.5 87.3 102 68.3 11 3in. 65 48.8 73.1 43.2 58.7 28.3 47.7 40.5 60.7 46.5 62.1 22/3 d_b 65 31.8 47.7 38.6 57.9 45.4 68.0 52.1 65.0 76.5 66.7 46.5 66.7 46.5 66.7 46.5 66.7 46.5 66.7 46.5 66.7 46.5 66.7 46.5 66.7 46.5 66.7 46.5 66.7 46.5 66.7 46.5 66.7 46.5 66.7 46.5 66.7 46.5 66.7 46.5 66.7 46.5 66.7 46.5 66.7 46.5		22/3 db	58 65	29.7	44.6	37.0	55.5 62.2	44.2	66.3	49.3	74.0
$2\ell_{13}$ db 58 3.62 5.44 4.35 6.53 5.08 7.61 5.80 3 in. 65 4.06 6.09 4.88 7.31 5.69 8.53 6.50 2 in. 65 4.06 6.09 4.88 7.31 4.89 6.53 5.08 7.61 4.74 174 5.60 2 2 in. 65 31.8 42.7 38.6 57.9 45.4 68.0 52.1 46.5 68.0 3 in. 58 36.3 54.4 43.5 65.3 50.8 76.1 56.2 82.1 5 s shuff 65 40.6 60.9 48.8 73.1 56.9 91.4 69.6 11 5 s shuff 65 48.8 73.1 58.5 87.8 68.3 10.2 78.0 11 5 s shuff 65 48.8 73.1 58.5 87.8 68.3 10.2 78.0 11 5 s shuff 65 36.3	•	3 in.	58 65	43.5	65.3	52.2	78.3	60.9	91.4	60.9	91.4
3 in. 58 43.5 65.3 39.2 58.7 28.3 42.4 17.4 5 $2^{2}/3$ d_b 56 48.8 73.1 43.9 65.8 31.7 47.5 19.5 5 $2^{2}/3$ d_b 56 31.8 42.9 65.8 31.7 47.5 19.5 5 3 in. 66 31.8 47.7 38.6 57.9 45.4 68.0 52.1 65.2 6 <t< td=""><td></td><td>22/3 db</td><td></td><td>3.62</td><td>5.44 6.09</td><td>4.35</td><td>6.53</td><td>5.08</td><td>7.61</td><td>5.80</td><td>8.70</td></t<>		22/3 db		3.62	5.44 6.09	4.35	6.53	5.08	7.61	5.80	8.70
22/3 db 655 31.8 47.7 38.6 57.9 46.5 60.7 46.5 31.8 47.7 38.6 57.9 45.4 68.0 52.1 31.8 65 31.8 47.7 38.6 57.9 45.4 68.0 52.1 51.0 56.8 36.3 51.8 65.3 50.8 76.1 56.2 52.1 56.9 52.1 56.1 56.1 56.1 56.1 56.1 56.1 56.1 56		3 in.	58	43.5	65.3	39.2	58.7	28.3	42.4	17.4	26.1
3 in. 58 36.3 54.4 43.5 65.3 50.8 76.1 56.2 $s \ge s_{hull}$ 56 40.6 60.9 48.8 73.1 56.9 85.3 63.0 $s \ge s_{hull}$ 58 43.5 65.3 52.2 78.3 60.9 91.4 69.6 1 $s \ge s_{hull}$ 58 48.8 73.1 58.5 87.8 68.3 102 78.0 1 $s \ge s_{hull}$ 58 36.3 54.4 43.5 65.3 50.8 76.1 58.0 77.1 for full LSLT 115/16 25/16 27/16 27/16 37/16 sitength OVS 27/16 27/16 27/16 27/16 35/16 LSLP 21/3/16 33/3 315/16 315/16 41/12 LSLP 21/3/16 33/3 315/16 41/12	١,	22/3 db	58	28.4	42.6	34.4	51.7	40.5	68.0	46.5	69.8
$s \ge s_{full}$ 58 43.5 65.3 52.2 78.3 60.9 91.4 69.6 1 $s \ge s_{full}$ 65 48.8 73.1 58.5 87.8 68.3 102 78.0 1 $s \ge s_{full}$ 58 36.3 54.4 43.5 65.3 50.8 76.1 58.0 76.1 58.0 s SSLT, 40.6 60.9 48.8 73.1 56.9 85.3 65.0 86.0 31/46 s SSLT, 115/16 27/16 27/16 27/16 21/16 31/4 in. SSLP 21/16 21/2 21/2 21/3 35/16 LSP 21/3 33/8 33/8 35/16 31/4		3 in.	58	36.3	54.4	43.5	65.3	50.8	76.1	56.2	84.3
36.3 54.4 43.5 65.3 50.8 76.1 58.0 40.6 60.9 48.8 73.1 56.9 85.3 65.0 115/16 25/16 21/16 31/16 31/16 21/16 21/16 21/16 35/16 21/16 21/16 35/16 35/16 21/16 33/8 315/16 35/16		S ≥ Sfull	92	43.5	65.3	52.2	78.3 87.8	60.9	91.4	69.6	104
21/16 25/16 21/16 21/16 27/16 213/16 21/8 21/2 27/18 213/16 33/16 411.		S ≥ Sfull	58	36.3	54.4	43.5	65.3	50.8	76.1	58.0	87.0 97.5
21/16 27/16 21/3/16 21/3/16 21/3/16 21/3 21/3 21/3/16 33/3 315/16 11/11/2 213/16 21/3/16 21/3/16 21/3/16 21/3/16 21/3/16 21/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3	icing fo	or full	STD, SSLT, LSLT		5/16	25	9/16	211	/16	31	/16
21/8 21/2 27/8 mm 213/4 33/8 315/16	Sta	mgma.	OVS	2	1/16	27	/16	213	3/16	3	/4
213/16 33/8 315/16	, illino		SSLP	2	1/8	2	1/2	2	//8	35	/16
,11,			LSLP	2	3/16	ŕ	3/8	31	1,16	4	1/2

Note: Spacing indicated is from the center of the hole or slot to the center of the adjacent hole of slot in the line of force. Hole deformation is considered. When hole deformation is not considered, see AISC Specification Section J3.10.

^a Decimal value has been rounded to the nearest sixteenth of an inch.

LRFD

ASD

 $\Omega = 2.00$

		16 H439			Nomir	nal Bolt D	Nominal Bolt Diameter, d, in.	, in.		
_	Bolt			11/8	L	11/4		13/8	03	11/2
Hole Type Spa	Spacing,	Fus KSI	ν/Ω	ofn.	Ω/uJ	φŁ	Ω/"	φĽ	Ω/uJ	φľn
1881 (8A	15	0.0	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
ern 22,	22/3 db	85 65	63.1	94.6	70.3	105	77.6	116	84.8 95.1	127
	3 in.	82 28	63.1	94.6 106	1.1	TI	LI	1.1	11	1.1
	22/3 db	82 93	52.2	78.3 87.8	59.5	89.2	66.7 74.8	100	74.0	111
SSLP 3	3 in.	92 28	52.2	78.3 87.8	11	LI	11	1.1	11	d L
	22/3 db	85 59	54.4	81.6 91.4	61.6	92.4 104	68.9	103	76.1 85.3	114
3	3 in.	92 92 93	54.4 60.9	81.6 91.4	11	LI	11	П	1.1	41
	22/3 db	92	6.53	9.79	7.25	10.9	7.98	12.0	8.70 9.75	13.1
l SIP	3 in.	88 88	6.53	9.79	11	L	11	1-1-	11	11
22	22/3 db	85 58	52.6 58.9	78.8 88.4	58.6 65.7	87.9 98.5	64.6	97.0 109	70.7	106
	3 in.	85 65	52.6 58.9	78.8	11	11	11	11	11	<u>‡</u> 1
STD, SSLT, SSLP, OVS, ST LSLP	S ≥ Sfull	88	78.3 87.8	117	87.0 97.5	131 146	95.7 107	144 161	104	157
LSLT 8	> Sfull	88 88	65.3	97.9	72.5	109 122	79.8	120	87.0 97.5	131
Spacing for full	3	STD, SSLT, LSLT	37,	37/16	313	313/16	43,	43/16	49,	49/16
Dearing strength	ff.	SAO	31	311/16	41/16	16	47	47/16	41	413/16
Sfull ^a , in.		SSLP	33	33/4	41/8	8,	41/2	,2	47/8	8/
		ISLP	51	51/16	55/8	8/	63	63/16	63/4	14
Minimum Spacing ^a =	1ga = 22	22/3d, in.	က		32	35/16	31	311/16	4	

11/6	Fedge Fin Kei Tyle Ty	Edge Γ _µ (Ω) r µ γ _µ (Ω) r				. <u>K</u>	kips/in.	÷	ness			The state of	
Le in. ASD LRFD ASD	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	t be bistance f _a ksi t _a		Edge	-	10000	11/8	Nom	Inal Bolt	Diameter,	d, In.		11/2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11/4 56 22.8 34.3 20.7 31.0 18.5 27.7 16.3 2.2 2.8 34.3 20.7 31.0 18.5 27.7 16.3 2.8 22.8 34.3 20.7 31.0 18.5 27.7 16.3 2.8 2.8 2.8 2.8 3.4 2.3.2 34.7 20.7 31.1 18.3 2.8 2.8 48.8 73.4 46.8 70.1 44.6 66.9 42.4 6.5 19.5 20.3 17.4 25.6 14.5 20.3 24.5 14.1 22.1 12.2 12.2 1.4 2.8 18.5 20.7 31.1 18.3 2.8 24.5 14.4 21.2 12.2 1.3 1.3	11/4 665 22.8 34.3 20.7 31.0 18.5 27.7 16.3 2 2 2 8 48.9 73.4 46.8 70.1 44.6 66.9 42.4 6 65 19.5 29.8 17.4 23.2 23.7 7.8 5.0 47.5 2 2 2 8 17.4 6.5 19.5 29.3 17.1 25.6 14.6 65.9 42.4 6 65.9 42.4 6 65.9 42.4 6 65.9 42.4 6 65.9 42.4 6 65.9 42.4 6 65.9 42.4 6 65.0 17.4 65.2 20.7 31.1 18.3 2.4 14.6 65.3 17.1 25.6 14.6 21.9 12.2 12.0 17.4 65.5 20.7 31.1 18.3 27.7 16.3 24.5 14.6 21.9 12.2 12.0 17.4 65.5 20.7 31.1 18.3 27.4 14.8 13.4 21.2 12.0 17.4 65.5 20.7 31.1 18.3 27.4 14.8 14.6 66.9 42.4 63.6 40.2 60.4 38.1 5 65.0 17.3 22.5 11.0 16.5 4.88 11.4 6.5 20.7 31.1 18.3 27.4 14.1 21.2 12.0 12.2 12.0 12.0 12.0 12.0 12	Hole Type	Distance	F _u , ksi	Γη/Ω	or _n	r _n /Ω	or _n	Ω/υ	φ r	Ω/uJ	\$¢
11/4 56 22.8 34.3 20.7 31.0 18.5 27.7 16.3 2 56 48.9 73.4 46.8 70.1 44.6 66.9 42.4 46.8 70.1 44.6 66.9 47.4 46.8 70.1 44.6 66.9 47.4 46.8 70.1 44.6 66.9 47.4 46.8 70.1 44.6 66.9 47.4 46.8 70.1 44.6 66.9 47.4 46.8 70.1 44.6 66.9 47.4 46.8 70.1 44.6 66.9 47.4 46.8 70.0 47.5 47.4 46.8 70.0 47.5 47.4 47.8 <th> 11/4 58 22.8 34.3 20.7 31.0 18.5 27.7 16.3 2.5 2.5 38.4 23.2 34.7 20.7 31.1 18.3 2.5 2.5 2.5 2.5 38.4 23.2 34.7 20.7 31.1 18.3 2.5 2.</th> <th>2 68 22.8 34.3 20.7 31.0 18.5 27.7 16.3 2 2 6 56.8 42.4 46.8 70.1 44.6 66.9 42.4 75.6 13.1 18.3 2 2 6 54.8 70.1 44.6 66.9 47.5 7 16.3 2 2 6 54.8 17.4 26.1 15.2 22.8 13.1 19.6 10.9 1 1 1 1 4 66.5 19.5 29.3 17.1 25.6 14.6 21.9 12.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th> <th>E I</th> <th></th> <th></th> <th>ASD</th> <th>LRFD</th> <th>ASD</th> <th>LRFD</th> <th>ASD</th> <th>LRFD</th> <th>ASD</th> <th>LRFD</th>	11/4 58 22.8 34.3 20.7 31.0 18.5 27.7 16.3 2.5 2.5 38.4 23.2 34.7 20.7 31.1 18.3 2.5 2.5 2.5 2.5 38.4 23.2 34.7 20.7 31.1 18.3 2.5 2.	2 68 22.8 34.3 20.7 31.0 18.5 27.7 16.3 2 2 6 56.8 42.4 46.8 70.1 44.6 66.9 42.4 75.6 13.1 18.3 2 2 6 54.8 70.1 44.6 66.9 47.5 7 16.3 2 2 6 54.8 17.4 26.1 15.2 22.8 13.1 19.6 10.9 1 1 1 1 4 66.5 19.5 29.3 17.1 25.6 14.6 21.9 12.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E I			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
2 56 48.9 73.4 46.8 70.1 44.6 66.9 42.4 75.6 56.0 75.0 47.5 47.5 66.5 54.8 82.3 52.4 78.6 50.0 75.0 47.5 47.5 56 19.5 19.5 12.2 22.8 13.1 19.6 10.9 12.2 56 48.8 73.7 15.2 22.8 13.1 19.6 10.9 12.2 56 48.8 73.7 16.3 24.5 14.1 21.2 12.0 12.0 17.4 66 20.7 31.1 18.3 27.4 15.8 23.8 13.4 17.4 66 20.7 31.1 18.3 27.4 15.8 23.8 13.4 42.7 17.1 22.8 97.9 14.7 4.3 25.9 17.3 2	11/4 58 48.9 73.4 46.8 70.1 44.6 66.9 42.4 75.0 75.0 47.5 75.0 47.5 75.0 47.5 75.0 47.5 75.0 47.5 75.0 47.5 75.0 47.5 75.0 47.5 75.0 47.5 75.0 47.5 75.0 47.5 75.0 47.5 75.0 47.5 75.0 47.5 75.0 47.5 75.0 47.5 75.0 47.5 75.0 7	11/4 58 48.9 73.4 46.8 70.1 44.6 66.9 42.4 76.5 75.0 47.5 75.0 7	eT.	11/4	58	22.8	34.3	20.7	31.0	18.5	31.1	16.3	24.5
11/4 58 17.4 26.1 15.2 22.8 13.1 19.6 10.9 2 58 43.5 65.3 41.3 62.0 38.2 58.7 37.0 2 56 48.8 73.1 46.3 69.5 43.9 65.8 41.2 12.2 11/4 58 18.5 27.7 16.3 27.4 15.8 28.9 42.8 17.2 12.2 12.2 41.1 17.2 12.2 12.2 14.1 21.2 12.2 12.3 41.4 21.2 12.2 12.3 41.4 21.2 12.2 12.8 41.4 65.8 41.4 65.8 42.4 65.8 42.4 65.8 42.7 66.9 42.4 65.6 42.7 <th< td=""><td> 11/4 58 17.4 26.1 15.2 22.8 13.1 19.6 10.9 1.2 1.</td><td> 11/4 58 17.4 26.1 15.2 22.8 13.1 19.6 10.9 1.2 2 58 43.5 65.3 41.3 62.0 39.2 58.7 37.0 58.7 11/4 58 18.5 27.7 16.3 27.4 11.8 27.8 11.0 12.2 12.0 11/4 58 20.7 31.1 18.3 27.4 15.8 23.8 41.4 65 10/4 65 20.0 31.0 15.2 22.8 41.4 65 11/4 65 50.0 75.0 47.5 71.3 45.1 67.6 42.7 67.6 11/4 65 20.7 31.0 15.2 22.8 9.79 14.7 4.35 2 65 50.0 28.5 17.3 22.8 9.79 14.7 4.35 2 58 40.8 61.2 39.0 58.5 37.2 55.7 35.3 11/4 65 21.3 32.0 19.3 28.9 17.3 25.9 15.2 2 58 40.8 61.2 39.0 58.5 37.2 55.7 35.3 2 58 40.8 61.2 39.0 58.5 37.2 55.7 35.3 4 58 19.0 28.5 17.3 25.9 15.2 4 5 5 5 5 5 5 5 5 5</td><td>SSLT</td><td>2</td><td>28</td><td>48.9</td><td>73.4</td><td>46.8</td><td>70.1</td><td>44.6</td><td>66.9</td><td>42.4</td><td>63.6</td></th<>	11/4 58 17.4 26.1 15.2 22.8 13.1 19.6 10.9 1.2 1.	11/4 58 17.4 26.1 15.2 22.8 13.1 19.6 10.9 1.2 2 58 43.5 65.3 41.3 62.0 39.2 58.7 37.0 58.7 11/4 58 18.5 27.7 16.3 27.4 11.8 27.8 11.0 12.2 12.0 11/4 58 20.7 31.1 18.3 27.4 15.8 23.8 41.4 65 10/4 65 20.0 31.0 15.2 22.8 41.4 65 11/4 65 50.0 75.0 47.5 71.3 45.1 67.6 42.7 67.6 11/4 65 20.7 31.0 15.2 22.8 9.79 14.7 4.35 2 65 50.0 28.5 17.3 22.8 9.79 14.7 4.35 2 58 40.8 61.2 39.0 58.5 37.2 55.7 35.3 11/4 65 21.3 32.0 19.3 28.9 17.3 25.9 15.2 2 58 40.8 61.2 39.0 58.5 37.2 55.7 35.3 2 58 40.8 61.2 39.0 58.5 37.2 55.7 35.3 4 58 19.0 28.5 17.3 25.9 15.2 4 5 5 5 5 5 5 5 5 5	SSLT	2	28	48.9	73.4	46.8	70.1	44.6	66.9	42.4	63.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11/4 58 43.5 65.3 41.3 62.0 39.2 58.7 37.0 58 43.8 73.1 46.3 69.5 43.9 65.8 41.4 65 20.7 31.1 18.3 27.4 15.8 23.8 13.4 2.5 2.5 20.7 31.1 18.3 27.4 15.8 23.8 13.4 2.5 20.7 31.1 18.3 27.4 45.1 67.6 42.7 6.5 6.5 40.2 60.4 38.1 3.4 2.5 6.5		11/4	88 88	17.4	26.1	15.2	22.8	13.1	19.6	10.9	16.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SSL	2	58	43.5	65.3	41.3	62.0	39.2	58.7	37.0	55.5 62.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	11/4	58	18.5	31.1	16.3	24.5	14.1	21.2	12.0	17.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11/4 58	SAO	2	58	44.6	66.9	42.4	63.6	40.2	60.4	38.1	57.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 58 20.7 31.0 15.2 22.8 9.79 14.7 4.35 11/4 56 23.2 34.7 17.1 25.6 11.0 16.5 4.88 12 58 19.0 28.5 17.2 25.8 15.4 25.9 15.2 2 58 40.8 61.2 39.0 58.5 37.2 55.7 35.3 2 58 40.8 61.2 39.0 58.5 37.2 55.7 35.3 3 40.8 61.2 39.0 58.5 37.2 55.7 35.3 4 58 78.3 17.7 87.0 131 95.7 144 104 15 4 58 65.3 97.5 109 79.8 120 87.0 13 5 5 5 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7 7 8 7 7 7 7 8 7 7 7 9 7 7 7 10 7 7 11 7 7 11 7 7 12 7 8 33/16 35/16 35/18 12 8 31/16 41/16 41/12 47/18 13 31/16 41/16 41/12 47/18 14 6 6 6 6 6 15 7 7 7 16 7 7 17 7 18 7 7 19 7 7 10 7 7 10 7 7 11 7 7 12 7 8 33/16 35/16 35/18 12 7 7 13 7 7 14 7 7 15 7 7 16 7 7 17 7 18 7 7 19 7 7 10 7 7 10 7 7 10 7 7 11 7 7 12 7 8 33/16 35/16 35/18 12 7 7 13 7 7 14 7 7 15 7 7 15 7 7 15 7 7 15 7 7 16 7 7 17 7 18 7 7 19 7 7 10 7	11/4 58 20.7 31.0 15.2 22.8 9.79 14.7 4.35 11/4 58 19.0 28.5 17.1 25.6 11.0 16.5 4.88 2 28 19.0 28.5 17.2 25.8 15.4 23.1 13.6 23.2 2 58 40.8 61.2 39.0 58.5 37.2 55.7 35.3 58.5 2 58 40.8 61.2 39.0 58.5 37.2 55.7 35.3 58.5 3 3 3 3 3 3 3 3 3		11/4	58	1.1	I I	1.1	11	11	11	11	11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11/4 58 19.0 28.5 17.2 25.8 15.4 23.1 13.6 2 58 40.8 61.2 39.0 58.5 37.2 55.7 35.3 2 58 40.8 61.2 39.0 58.5 37.2 55.7 35.3 4 58 78.3 117 87.0 131 95.7 144 104 117 4 58 78.3 117 87.0 131 95.7 141 117 11 58 78.3 17.5 97.5 146 107 161 117 11 4 58 65.3 97.9 72.5 109 79.8 120 87.0 131 5 5 73.1 110 81.3 122 89.4 134 97.5 13 5 5 5 5 5 5 5 5 6 6 6 73.1 110 81.3 122 89.4 134 97.5 13 6 6 6 73.1 110 81.3 122 89.4 134 97.5 13 6 7 7 7 7 7 7 7 7 6 7 7 7 7 7 7 7 7 7	11/4 58 19.0 28.5 17.2 25.8 15.4 23.1 13.6 2 58 40.8 61.2 39.0 58.5 37.2 55.7 35.3 2 56 40.8 61.2 39.0 58.5 37.2 55.7 35.3 41, 58 78.3 117 87.0 131 95.7 144 104 117 11 4 2 2 2 2 2 2 2 2 2	TSI.	2	58	20.7	34.7	15.2	22.8	9.79	14.7	4.35	6.53
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 58 40.8 61.2 39.0 58.5 37.2 55.7 35.3 4.5 4.5 68.6 43.7 65.5 41.6 62.5 39.6 4.5 4.5 68.6 43.7 65.5 41.6 62.5 39.6 4.5 4.5 68.6 43.7 65.5 41.6 62.5 39.6 4.5 4.5 48.8 41.2 41.4 41.4 41.4 4.5 4.5 4.5 41.2 41.2 41.2 41.2 41.2 4.5 4.5 41.4 41.4 41.4 41.4 4.5 4.5 41.5 41.5 41.5 41.5 41.5 5.5 4.5 41.6 41.5 41.5 41.5 6.5 4.5 41.6 41.5 41.5 41.5 6.5 4.5 41.6 41.5 41.5 6.5 4.5 41.6 41.5 41.5 6.5 4.5 41.6 41.5 41.5 7.5 4.5 41.5 41.5 7.5 4.5 41.5 7.5 4.5 41.5 7.5 4.5 41.5 7.5 4.5	2 58 40.8 61.2 39.0 58.5 37.2 55.7 35.3 35, 3 40.8 61.2 43.7 65.5 41.6 62.5 39.6 35, 45, 7 68.6 43.7 65.5 41.6 62.5 39.6 40, 4 40.4 40.4 40.4 40.4 41, 4 40.4 40.4 40.4 40.4 42 43 43.4 43.4 40.4 40.4 43, 4 40.4 40.4 40.4 40.4 44, 5 40.4 40.4 40.4 44, 5 40.4 40.4 44, 5 40.4 40.4 44, 5 40.4 40.4 44, 5 40.4	-	11/4	58	19.0	28.5	17.2	25.8	15.4	23.1	13.6	20.4
$L_e \ge L_e nul$ 58 78.3 117 87.0 131 95.7 144 104 $L_e \ge L_e nul$ 65 87.8 132 97.5 146 107 161 117 stance STD, stance SSL, solid 27/8 33/16 31/2 89.4 134 97.5 stance SSL, solid 27/8 33/16 35/16 35/2 97.5 mill, in. SSLP 3 35/16 35/8 35/8 41/9	US, $L_e \ge L_e \ null$ 58 78.3 117 87.0 131 95.7 144 104 VS, $L_e \ge L_e \ null$ 66 87.8 132 97.9 72.5 146 107 161 117 Le $\ge Le \ null$ 66 73.1 110 87.9 72.5 109 79.8 120 87.0 e distance SSLI, and leaving 27/8 33/16 33/16 31/2 319/2 315/8	VS, $L_e \ge L_e hull$ Le $\ge L_e hull$ Le $\ge L_e hull$ trength Le $I_e \ge I_e hull$ trength Le $I_e \ge I_e hull$ in the standard hole short-slotted hole short-slotted hole ong-slotted hole ong-slo	TS.	2	58	40.8	61.2	39.0	58.5	37.2	55.7	35.3	53.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$L_{e} \ge L_{e} \ \ nul \ \ bearing \ bearing \ c \ distance \ dista$	$L_e \geq L_e \; \mathit{hull}$ the action of the stance of the standard hole short-stotted hole short-stotted hole ong-slotted hole of the slotted hole of the s	STD, SSLT, SSLP, OVS, LSLP	-	88 88	78.3	117	87.0 97.5	131	95.7 107	144	104	157
SSLT, 27/8 33/16 31/2 LSLT 0VS 3 35/16 35/8 SSLP 3 35/16 35/8 LSLP 311/16 41/16 41/0	e distance SSLT, $2^7/8$ $3^3/16$ $3^3/16$ $3^1/2$ thun bearing LSLT $3^2/8$ $3^3/16$ $3^3/1$	e distance 'ull bearing trength . Le full' in. Standard hole short-slotted hole ong-slotted hole ong-slotted hole ong-slotted hole ong-slotted hole ong-slotted hole	LSLT	Le ≥ Le full	58	65.3	97.9	72.5	109	79.8	120	87.0 97.5	131
SSLP 3 35/16 35/8 15/8 1SIP 311/16 41/16 41/9	trength OVS 3 35/16 35/8 Le full ² , in. SSLP 3 35/16 35/8 tatandard hole short-slotted hole oriented parallel to the line of force ong-slotted hole oriented parallel to the line of force ong-slotted hole oriented parallel to the line of force ong-slotted hole oriented parallel to the line of force ong-slotted hole oriented parallel to the line of force ong-slotted hole oriented parallel to the line of force	trength Le fuul*, in. Standard hole short-slotted hole short-slotted hole ong-slotted hole ong-slotted hole ong-slotted hole ong-slotted hole ong-slotted hole	Edge d	istance	STD, SSLT, LSLT	27			3/16	31,		31:	3/16
SSLP 3 35/16 35/8	Le full ² , in. SSLP 3 3 ⁵ / ₁₆ 3 ⁵ / ₁₆ 3 ⁵ / ₁₈ 10. LSLP 3 ¹¹ / ₁₆ 4 ¹ / ₁₆ 4 ¹ / ₂ 10. Standard hole softented transverse to the line of force and-siotted hole oriented parallel to the line of force and-siotted hole oriented parallel to the line of force and-siotted hole oriented parallel to the line of force and-siotted hole oriented parallel to the line of force and-siotted hole oriented transverse to the line of force and-siotted hole oriented transverse to the line of force	Le full ^a , in. standard hole short-slotted hole oversized hole ong-slotted hole ong-slotted hole ong-slotted hole	stre	ngth	OVS	3	100	3	91/9	35,	.89	31	5/16
311/36 41/9	tandard hole short-slotted hole oriented transverse to the line of force short-slotted hole oriented parallel to the line of force oversized hole oriented parallel to the line of force ong-slotted hole oriented parallel to the line of force ong-slotted hole oriented parallel to the line of force ong-slotted hole oriented transverse to the line of force	standard hole short-slotted hole short-slotted hole oversized hole ong-slotted hole ong-slotted hole ong-slotted hole	$r_{\theta} \geq r_{\theta}$	fulr ^a , in.	SSLP	3	262	3	5/16	35,	8,	31	5/16
2/.	standard hole short-slotted hole oriented transverse to the line of force short-slotted hole oriented parallel to the line of force hore; stated hole oriented parallel to the line of force ong-slotted hole oriented parallel to the line of force ong-slotted hole oriented transverse to the line of force one-slotted hole oriented transverse to the line of force	standard hole short-slotted hole short-slotted hole oversized hole ovg-slotted hole cong-slotted hole	19	8 36 8	LSLP	31	1/16	8.8.9	1/16	41,	2	47	8/

ASD Plan Tr/Ω φr r ₀ /Ω φr φr r ₀ /Ω φr φr φr φr φr	Edge La. F _k ksi g_{k} s <			i h telha	K	Kips/in. thickness	thick	inal Rolf	Nismater	2.		
Les in. ASD LRFD ASD SSD SD	Used through the properties of the prope	Hale Tone	Edge			5/8	E ON	3/4	Diameter,	a, in.	30	-
11/4 56 35.3 53.0 32.9 44.0 27.2 40.8 25.0 11/4 65 35.3 53.0 32.9 49.4 30.5 45.7 28.0 25.0 11/4 65 35.3 53.0 32.9 49.4 30.5 45.7 28.0 25.0 11/4 66 32.9 49.4 30.5 65.3 53.2 79.9 51.1 2 65 48.8 73.1 58.5 87.8 56.1 84.1 52.4 11/4 65 32.9 49.4 30.5 45.7 28.0 23.2 65 48.8 73.1 88.5 87.8 56.1 84.1 52.4 11/4 65 32.9 49.4 30.5 45.7 28.0 24.4 20.8 25.0 37.5 21.8 11/4 65 32.9 49.4 30.5 45.7 28.0 37.5 21.8 11/4 65 32.9 49.4 30.5 45.7 28.0 37.5 21.8 11/4 65 32.9 49.4 30.5 45.7 28.0 37.5 29.3 11/4 65 32.9 49.4 30.5 45.7 28.0 37.5 29.3 11/4 65 32.9 49.4 30.5 45.7 28.0 37.5 29.3 11/4 65 32.9 49.4 30.5 55.5 31.5 47.3 26.1 2.9 16.3 5.0 16.3	1/4 58 31.5 47.3 29.4 44.0 27.2 40.8 25.0 2 58 31.5 47.3 29.4 44.0 27.2 40.8 25.0 2 58 43.5 53.0 32.9 49.4 30.5 45.7 28.0 2 58 43.5 53.0 32.9 49.4 30.5 45.7 28.0 1/4 58 28.3 34.4 24.4 25.3 35.3 35.3 35.3 35.3 1/4 58 28.4 44.0 27.2 40.8 25.0 1/4 58 29.4 44.0 27.2 40.8 25.0 1/4 58 29.4 44.0 27.2 40.8 25.0 1/4 58 29.4 44.0 27.2 40.8 25.0 1/4 58 43.5 65.3 52.2 78.3 50.0 75.0 46.8 1/4 58 43.5 65.3 52.2 78.3 50.0 75.0 46.8 1/4 58 43.5 65.3 32.2 78.3 50.0 91.4 2 58 43.5 65.3 32.4 41.1 25.4 38.1 23.4 1/4 58 16.3 24.4 43.5 65.3 31.5 44.4 66.6 42.6 2 58 36.3 54.4 43.5 65.3 31.5 44.4 66.6 42.6 2 58 36.3 54.4 43.5 65.3 30.8 74.6 47.7 2 58 36.3 54.4 43.5 65.3 30.8 74.6 47.7 4 58 36.3 54.4 43.5 65.3 30.8 74.6 47.7 5 5 6 48.8 73.1 58.5 87.8 68.3 10.2 78.0 6 5 48.8 73.1 58.5 87.8 68.3 10.2 78.0 6 5 48.8 73.1 58.5 87.8 68.3 10.2 78.0 7 6 6 9 48.8 73.1 56.9 87.3 65.0 8 5 6 6 9 48.8 73.1 56.9 87.8 8 6 6 6 9 48.8 73.1 56.9 87.8 9 6 7 111/16 2 27/16 27/14 27/16 1 6 6 7 111/16 2 27/16 27/14 1 6 6 7 10.0 1 6 6 6 6 6 6 6 1 7 6 7 6 7 1 7 7 7 7 7 1 7 7 7 7 7 1 8 7 1 7 7 7 1 8 7 1 7 7 7 1 8 7 1 7 7 7 1 8 7 1 7 7 7 1 9 8 7 1 7 7 1 9 8 7 1 7 7 1 9 8 7 1 7 7 1 9 8 7 1 7 7 1 9 8 7 1 7 7 1 9 8 7 1 7 7 1 9 8 7 1 7 7 1 9 8 7 1 7 7 1 9 8 7 1 7 7	ное туре	Distance L_{θ} , in.	F _{us} KSI	1 6	φŁ	r _n /Ω	or _n	1	φr _n	r _n /Ω	or.
11/4	11/4 56 31.5 47.3 29.4 44.0 27.2 40.8 25.0 2 56 35.3 53.0 32.9 49.4 30.5 45.7 28.0 2 56 43.8 53.1 58.5 78.3 58.3 79.9 51.1 2 56 48.8 73.1 58.5 87.8 58.7 89.6 57.3 2 56 48.8 73.1 58.5 87.8 56.1 84.1 52.4 4 66 39.7 47.5 29.3 43.9 56.1 84.1 52.4 5 66 48.8 73.1 58.5 87.8 56.0 37.5 21.8 11/4 56 48.8 73.1 58.5 87.8 57.3 59.6 37.6 5 65 48.8 73.1 58.5 87.8 57.3 58.9 58.1 6 48.8 73.1 22.7 44.2 2		EN (3.8)	25	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	GE
2 58 43.5 65.3 52.2 78.3 53.3 79.9 51.1 11/4 58 28.3 73.1 58.5 87.8 59.7 89.6 57.3 2 65.3 31.7 47.5 29.3 43.9 26.8 40.2 23.2 23.9 26.8 40.2 23.2 25.6 48.8 73.1 58.5 87.8 56.1 84.1 52.4 44.0 27.2 40.8 25.0 75.0 46.8 2.9 49.4 30.5 44.7 28.0 42.0 24.4 2 65.3 52.2 78.3 51.1 76.7 47.9 58 43.5 65.3 52.2 78.3 51.1 76.7 47.9 2 65 48.8 73.1 58.5 87.8 57.3 85.9 53.6 11/4 66 18.3 27.4 10.2 16.3 57.3 51.8 67.9 91.4 − − − − − − − − − − − − − − − − − − −	2 58 43.5 65.3 52.2 78.3 53.3 79.9 51.1 1 58.5 65.3 52.2 78.3 53.3 79.9 51.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	STD	11/4	58 65	31.5	47.3	29.4	44.0	27.2	40.8	25.0	37.5
2 58 43.5 65.3 52.2 78.3 50.0 75.0 46.8 11/4 65 31.7 47.5 29.3 43.9 26.8 40.2 23.2 23.9 20.7 11/4 65 48.8 73.1 58.5 87.8 56.1 84.1 52.4 11/4 65 32.9 44.0 27.2 40.8 25.0 37.5 21.8 11/4 65 48.8 73.1 58.5 87.8 56.1 84.1 52.4 24.5 65.3 52.0 46.8 16.3 22.9 4.4 40.0 27.2 40.8 25.0 37.5 21.8 11/4 65 18.3 24.5 10.9 16.3 5.44 8.16 − 2 65 48.8 73.1 58.5 87.3 54.4 8.16 − 2 65 47.5 71.3 41.4 65.2 35.3 37.0 29.3 11/4 65 29.5 44.2 27.4 31.1 22.7 34.0 29.3 11/4 65 29.5 44.2 27.4 31.1 22.7 34.0 29.3 11/4 65 40.6 60.9 48.8 73.1 49.8 73.1 49.8 73.1 49.8 73.1 69.6 60.9 48.8 73.1 66.3 50.9 11.4 69.6 60.9 48.8 73.1 58.3 60.9 91.4 69.6 60.9 48.8 73.1 56.9 85.3 50.8 77.1 58.0 60.9 91.4 69.6 60.9 48.8 73.1 56.9 85.3 50.8 77.1 58.0 60.9 91.4 69.6 60.9 48.8 73.1 56.9 85.3 50.8 77.1 58.0 60.9 91.4 69.6 60.9 48.8 73.1 56.9 85.3 50.8 77.1 58.0 60.9 91.4 69.6 60.9 48.8 73.1 56.9 85.3 50.8 77.1 58.0 60.9 91.4 69.6 60.9 48.8 73.1 56.9 85.3 50.8 77.1 58.0 60.9 91.4 69.6 60.9 48.8 73.1 56.9 85.3 50.8 77.1 58.0 60.9 91.4 69.6 60.9 48.8 73.1 56.9 85.3 50.8 77.1 58.0 60.9 91.4 69.6 60.9 48.8 73.1 56.9 85.3 50.8 77.1 58.0 60.9 91.4 69.6 60.9 60.9 48.8 73.1 56.9 85.3 60.9 91.4 69.6 60.9 60.9 60.9 60.9 60.9 60.9 60.9	11/4 66 31.7 47.5 29.3 43.9 26.8 40.2 23.2 28.9 26.8 40.2 23.2 28.9 28.7 43.9 26.8 40.2 23.2 28.9 28.7 56.5 31.7 47.5 29.3 43.9 26.8 40.2 23.2 29.8 43.5 65.3 52.2 78.3 56.1 84.1 52.4 44.0 27.2 40.8 25.0 37.5 21.8 22.9 49.4 30.5 46.8 25.0 37.5 21.8 22.9 49.4 30.5 46.8 25.0 37.5 21.8 22.9 49.4 30.5 46.8 25.0 37.5 21.8 21.8 21.9 20.1 22 56 48.8 73.1 58.5 87.8 57.3 85.9 33.6 24.4 21.2 28.8 36.3 27.4 12.2 18.3 6.09 9.14 — 2.5 65 47.5 71.3 41.4 65.2 23.3 35.3 29.1 29.8 20.3 20.4 43.5 65.3 35.0 29.3 20.1 20.8 20.3 39.4 43.5 65.3 35.0 29.3 35.0 29.3 20.1 20.8 20.3 20.3 20.4 20.5 20.8 20.3 20.4 20.5 20.8 20.3 20.4 20.5 20.8 20.3 20.4 20.5 20.8 20.3 20.4 20.5 20.8 20.3 20.4 20.5 20.8 20.3 20.4 20.5 20.8 20.3 20.4 20.5 20.8 20.3 20.4 20.5 20.8 20.3 20.4 20.5 20.8 20.3 20.4 20.5 20.8 20.3 20.4 20.5 20.8 20.3 20.4 20.5 20.8 20.3 20.4 20.5 20.8 20.3 20.4 20.5 20.8 20.3 20.4 20.5 20.8 20.3 20.4 20.5 20.8 20.8 20.3 20.4 20.5 20.8 20.8 20.3 20.4 20.5 20.8 20.5 20.8 20.3 20.4 20.5 20.8 20.3 20.4 20.5 20.8 20.3 20.4 20.5 20.8 20.8 20.5 20.8 20.8 20.5 20.8 20.8 20.8 20.5 20.8 20.8 20.5 20.8 20.8 20.8 20.5 20.8 20.8 20.5 20.8 20.8 20.8 20.5 20.8 20.8 20.5 20.8 20.8 20.8 20.5 20.8 20.8 20.8 20.5 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8	SSLT	2	28	43.5	65.3	52.2	78.3	53.3	79.9	51.1	76.7
2 58 43.5 65.3 52.2 78.3 50.0 75.0 46.8 11/4 58 29.4 44.0 27.2 40.8 56.1 84.1 52.4 65.3 52.9 49.4 30.5 45.7 28.0 42.0 24.4 52.9 65 48.8 56.1 84.1 52.4 48.8 52.9 49.4 30.5 45.7 28.0 42.0 24.4 11/4 56 18.3 24.5 10.9 16.3 54.8 81.6 − 11/4 65 47.5 71.3 41.4 65 39.4 24.5 37.0 55.5 31.5 47.3 26.1 $\frac{1}{4}$ $\frac{5}{4}$ $\frac{1}{4}$ \frac	2 58 43.5 65.3 52.2 78.3 50.0 75.0 46.8 11/4 58 29.4 44.0 27.2 40.8 25.0 37.5 21.8 2.4 44.0 27.2 40.8 25.0 37.5 21.8 2.5 65 32.9 49.4 30.5 45.7 28.0 42.0 24.4 2.5 65 32.9 49.4 30.5 52.2 78.3 51.1 76.7 47.9 2.5 65 48.8 65.3 22.4 10.9 16.3 5.44 81.6 − 11/4 65 18.3 27.4 12.2 18.3 6.09 9.14 − 23.4 65 29.5 47.5 71.3 41.4 65.2 35.3 39.4 24.5 65.3 31.5 47.3 26.1 29.5 65 40.6 60.9 48.8 73.1 58.5 60.9 91.4 66.6 47.5 65 40.6 60.9 48.8 73.1 58.5 60.9 91.4 66.6 17.5 65 40.6 60.9 48.8 73.1 58.5 60.9 91.4 66.6 17.5 65 40.6 60.9 48.8 73.1 58.5 60.9 91.4 69.6 17.5 65 40.6 60.9 48.8 73.1 58.5 60.9 91.4 69.6 17.5 65 40.6 60.9 48.8 73.1 58.5 60.9 91.4 69.6 17.5 65 40.6 60.9 48.8 73.1 58.5 60.9 91.4 69.6 17.5 65 40.6 60.9 48.8 73.1 58.5 60.9 91.4 69.6 17.5 65.0 60.9 91.4 69.6 17.5 65.0 60.9 91.4 69.6 17.5 65.0 60.9 91.4 69.6 17.5 65.0 60.9 91.4 69.6 17.5 65.0 60.9 91.4 69.6 17.5 60.9 91.4 69		11/4	85 58	28.3	42.4	26.1	39.2	23.9	35.9	20.7	34.7
11/4 58 29.4 44.0 27.2 40.8 25.0 37.5 21.8 2 58 48.8 73.1 58.2 78.3 51.1 76.7 47.9 1/4 66 48.8 73.1 58.5 87.8 57.3 85.9 53.6 2 66 48.8 73.1 58.5 10.3 16.3 54.4 8.16 — 2 65 18.3 27.4 10.9 16.3 54.4 8.16 — 2 65 47.5 71.3 41.4 62.2 35.3 29.3 11/4 58 26.3 39.4 24.5 36.7 22.7 34.0 20.8 2 56 36.3 54.4 43.5 65.3 36.7 22.7 34.0 20.8 4.0 6.0 48.8 73.1 43.8 65.3 91.4 69.6 4.0 6.0 48.8 73.1 56.9 9	11/4 66 32.9 49.4 41.0 27.2 40.8 25.0 37.5 21.8 2 56 32.9 49.4 30.5 45.7 28.0 42.0 24.4 2 66 48.8 73.1 58.5 87.8 57.1 76.7 47.9 2 65 48.8 73.1 58.5 87.8 57.1 76.7 47.9 2 65 48.8 73.1 68.5 87.8 60.9 91.4 — — — — — — — — — — — — — — — — — — —	SSLP	2	85 58	43.5	65.3	52.2	78.3	50.0	75.0	46.8	70.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	11/4	58	29.4	44.0	27.2	40.8	25.0	37.5	21.8	32.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11/4	SA .	2	85 58	43.5	65.3	52.2	78.3	51.1	76.7	47.9	71.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 58 42.4 63.6 37.0 55.5 31.5 47.3 26.1 1 6.2 35.3 26.3 29.3 11.4 58 26.3 39.4 24.5 36.7 22.7 34.0 20.8 2 6.5 29.5 44.2 27.4 41.1 25.4 38.1 23.4 23.4 24.5 65.3 44.4 66.6 42.6 65.3 65.3 65.3 65.3 65.3 65.3 65.3 65		11/4	28	16.3	24.5	10.9	16.3	5.44	8.16	1 1	11
1/4 58 26.3 39.4 24.5 36.7 22.7 34.0 20.8 2 58 36.3 54.4 43.5 65.3 44.4 66.6 42.6 $L_e \ge L_e \iota $	11/4 58 26.3 39.4 24.5 36.7 22.7 34.0 20.8 2 58 36.3 29.5 44.2 27.4 41.1 25.4 38.1 23.4 Le Le Lull 58 36.3 54.4 43.5 65.3 44.4 66.6 42.6 47.7 Le Le Lull 58 36.3 52.2 78.3 60.9 91.4 69.6 17.7 stance SSL, 48.8 73.1 58.5 87.8 68.3 102 78.0 17.6 stance SSL, 46.6 60.9 48.8 73.1 56.9 85.3 65.0 stance SSL, 11/16 2 73.1 56.9 85.3 65.0 stance SSL, 11/16 2 25/16 25/16 25/16 25/16 SSL, 11/16 2 25/16 25/16 25/16 31/4 Assuted hole 21/16 27/16	25	2	58 65	42.4	63.6	37.0	55.5	31.5	47.3	26.1	39.2
L _e ≥ L _e tull 65 48.8 73.1 49.8 73.1 49.8 74.6 42.6 42.6 6.09 48.8 73.1 49.8 74.6 47.7 73.1 49.8 73.1 49.8 74.6 47.7 73.1 58.8 64.3 102 78.0 69.6 60.9 48.8 73.1 58.5 87.8 68.3 102 78.0 78.0 78.0 78.0 78.0 78.0 78.0 78.0	Le ≥ Le tuli 65 40.6 60.9 48.8 73.1 49.8 74.6 66.6 42.6 42.6 66.9 48.8 73.1 49.8 74.6 47.7 74.6 47.7 73.1 58.5 67.3 60.9 91.4 69.6 17.7 73.1 58.5 67.8 68.3 10.2 78.0 11.5 78.1 65.9 87.8 68.3 10.2 78.0 11.5 78.1 58.5 67.9 87.8 68.3 10.2 78.0 11.5 78.1 58.0 87.8 68.3 10.2 78.0 11.5 78.1 58.0 87.8 68.3 10.2 78.0 11.5 78.1 58.0 87.8 68.3 10.2 78.0 11.5 78.1 58.0 87.8 68.3 10.2 78.0 11.5 78.1 58.0 87.8 68.3 10.2 78.0 11.5 78.1 58.0 87.8 68.3 10.2 78.0 11.5 78.1 58.0 87.3 65.0 11.5 78.1 58.0 87.3 65.0 11.5 78.1 78.1 58.0 87.3 65.0 11.5 78.1 78.1 58.0 87.3 65.0 11.5 78.1 78.1 78.1 58.0 87.3 65.0 11.5 78.1 78.1 78.1 78.1 78.1 78.1 78.1 78.1		11/4	28	26.3	39.4	24.5	36.7	22.7	34.0	20.8	31.3
$L_e \ge L_e \ null$ 58 43.5 65.3 52.2 78.3 60.9 91.4 69.6 $L_e \ge L_e \ null$ 65 48.8 73.1 58.5 87.8 68.3 102 78.0 $L_e \ge L_e \ null$ 56 48.6 73.1 56.9 85.3 58.0 stance SSLI, stance 15/8 115/16 21/4 29/14 searing ogth 0VS 111/16 2 25/16 25/16 25/16 sull, in, in, in, in, in, in, in, in, in, in	L _e ≥ L _e hul 65 48.8 73.1 58.5 87.8 60.9 91.4 69.6 1 L _e ≥ L _e hul 65 48.8 73.1 58.5 87.8 68.3 102 78.0 1 L _e ≥ L _e hul 65 36.9 36.9 31.4 69.6 1 L _e ≥ L _e hul 65 36.9 36.3 56.0 76.1 58.0 1 STD, stance SSLT, 15/8 115/16 21/4 29/16 SSLT 11/16 2 25/16 21/16 SSLP 11/16 2 2 25/16 21/16 LSLT 21/16 27/16 27/16 27/18 31/4 LSLP 21/16 27/16 27/16 27/18 31/4 LSLP 21/16 27/16 27/18 31/4 Sized hole oriented parallel to the line of force stand hole oriented parallel to the line oriented paralle	LSLI	2	85 58	36.3	54.4	43.5	65.3	44.4	66.6	42.6	63.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SLT $L_{e} \ge L_{e} \iota \iota \iota \iota$ 58 36.3 54.4 43.5 65.3 50.8 76.1 58.0 56.9 SLT $L_{e} \ge L_{e} \iota \iota \iota \iota$ 57.1 56.9 85.3 65.0 SLT $L_{e} \ge L_{e} \iota \iota \iota \iota$ 57.1 15/16 $L_{e} \ge L_{e} \iota \iota \iota \iota$ 57.1 15/16 $L_{e} \ge L_{e} \iota \iota \iota \iota$ 57.1 15/16 $L_{e} \ge L_{e} \iota \iota \iota \iota$ 58.1 $L_{e} = L_{e} \iota \iota \iota \iota \iota$ 58.1 $L_{e} = L_{e} \iota \iota \iota \iota \iota$ 58.1 $L_{e} = L_{e} \iota \iota \iota \iota \iota$ 59.1 $L_{e} = L_{e} \iota \iota \iota \iota \iota$ 59.1 $L_{e} = L_{e} \iota \iota \iota \iota \iota$ 59.1 $L_{e} = L_{e} \iota \iota \iota \iota \iota \iota$ 69.1 $L_{e} = L_{e} \iota \iota \iota \iota \iota \iota \iota$ 69.1 $L_{e} = L_{e} \iota $	STD, SSLT, SSLP, OVS,	7		43.5	65.3	52.2	78.3	60.9	91.4	69.6	401 711
SSLT, 15/8 115/16 21/4 LSLT OVS 111/16 2 2 25/16 SSLP 111/16 2 2 25/16	Edge distance SSLT, tables $15/8$ $115/16$ $21/4$ or full bearing strength strength USLT $11/1/16$ 2 $25/16$ $25/16$ $L_{e} \ge L_{e}$ full, in. SSLP $111/16$ 2 $25/16$ $25/16$ = standard hole = short-slotted hole oriented transverse to the line of force = oversized hole $21/16$ $21/16$ $21/16$ = short-slotted hole oriented parallel to the line of force = oversized hole $21/16$ $21/16$ = noversized hole = oversized hole = oversized hole $21/16$ $21/16$ = noversized hole = oversized hole $21/16$ $21/16$ $21/16$ = noversized hole = oversized hole $21/16$ $21/16$ $21/16$ = noversized hole = oversized hole $21/16$ $21/16$ $21/16$ = non-soluted hole oriented parallel to the line of force $21/16$ $21/16$ $21/16$	LSLT	Le > Le full	92 99	36.3	54.4	43.5	65.3	50.8	76.1	58.0	87.0
SSLP 111/16 2 25/16	strength OVS $11/1_{16}$ 2 $2^5/1_6$ Le > Le run², in. SSLP $11/1_{16}$ 2 $2^5/1_6$ = standard hole = short-slotted hole oriented transverse to the line of force = short-slotted hole oriented parallel to the line of force = oversized hole = a oversized hole = a oversized hole = non-slotted hole oriented parallel to the line of force = long-slotted hole oriented parallel to the line of force	Edge di	stance	STD, SSLT, LSLT	15/			15/16	21/		59	/16 00
SSLP 111/16 2 25/16	$t_0 \ge Le \ t_{ull} p$, in. SSLP $11/1_{116}$ 2 $2^5/1_{16}$ $2^7/1$	strer	ngth	SAO	11	1/16	2		25	/16	25	8
	= standard hole = standard hole = short-slotted hole oriented transverse to the line of force = short-slotted hole oriented parallel to the line of force = orensized hole = long-slotted hole oriented parallel to the line of force = long-slotted hole oriented parallel to the line of force = long-slotted hole oriented transverse to the line of force	L _e ≥ L _e	tult ^a , in.	SSLP	111	1/16	2	0.8	25	/16	21	1/16
2,/16 2,/18	= standard hole = short-slotted hole oriented transverse to the line of force = short-slotted hole oriented parallel to the line of force = oversized hole = long-slotted hole oriented parallel to the line of force			LSLP	21/	16	2	7/16	27/	8,	31	4
S		Ω = 2.00	φ = 0.75	Note: Spac slot in the see AISC S	ing indicate line of force specification	Note: Spacing indicated is from the c slot in the line of force. Hole deforma see AISC Specification Section J3.10.	he center of rmation is u	f the hole or considered.	slot to the When hole o	Note: Spacing indicated is from the center of the hole or slot to the center of the adjacent hole of slot in the line of force. Hole deformation is considered. When hole deformation is not considered, see AISC Specification Section J3.10.	e adjacent is not cons	nole of idered,