►A

Problem Solving, Units and Numerical Accuracy

Problem Solution Method:

1.	Inputs <u>GIVEN:</u> Outputs "Critical Path" <u>SOLUTION</u> on graph paper					
2.	Draw simple diagram of body/bodies & forces acting on it/them.					
3.	Choose a reference system for the forces.					
4.	Identify key geometry and constraints.					
5.	Write the basic equations for force components.					
6.	Count the equations & unknowns.					
7.	SOLVE					
8.	"Feel" the validity of the answer. (Use common sense. Check units)					
Example: Two forces, A & B, act on a particle. What is the resultant?						
	1. <u>GIVEN</u> : Two forces on a particle and a diagram with size and orientation \mathbf{A}^{E}					
	FIND: The "resultant" of the two forces					

SOLUTION:

- 2. Draw what you know (the diagram, any other numbers in the problem statement that could be put on the drawing....)
- 3. Choose a reference system. What would be the easiest? Cartesian, radian?
- 4. Key geometry: the location of the particle as the origin of all the forces Key constraints: the particle is "free" in space
- 5. Write equations: $size of A^2 + size of B^2 = size of resultant$ $sin \alpha = \frac{size of B}{size of A + B}$
- 6. Count: Unknowns: 2, magnitude and direction \leq Equations: 2 \therefore can solve
- 7. Solve: graphically or with equations
- 8. "Feel": Is the result bigger than A and bigger than B? Is it in the right direction? (like A & B)

<u>Units</u>

_	Units	Mass	Length	Time	Force
	SI	kg	m	S	$N = \frac{kg \cdot m}{s^2}$
	Absolute English	lb	ft	S	$Poundal = \frac{lb \cdot ft}{s^2}$
	Technical English	$slug = rac{lb_f \cdot s^2}{ft}$	ft	S	Ib _{force}
	Engineering English	lb	ft	S	Ib _{force}
		$Ib_{force} = Ib_{(mass)} \times 32$	$2.17 \frac{ft}{s^2}$		
	gravitational constant	$g_c = 32.17 \frac{ft}{s^2}$	(English)		
		$g_{c} = 9.81 \frac{m}{s^{2}}$	(SI)		
	conversions (pg. vii)	1 in = 25.4 mm 1 lb = 4.448 N			

Numerical Accuracy

Depends on 1) accuracy of data you are given 2) accuracy of the calculations performed

The solution CANNOT be more accurate than the less accurate of #1 and #2 above!

DEFINITIONS:	precision	the number of significant digits
	accuracy	the possible error

Relative error measures the degree of accuracy:

 $\frac{\text{relative error}}{\text{measurement}} \times 100 = \text{degree of accuracy (\%)}$

For engineering problems, accuracy *rarely* is less than 0.2%.