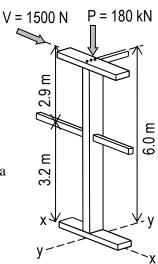
ARCH 614: Practice Quiz 7

Note: No aids are allowed for part 1. One side of a letter sized paper with notes is allowed during part 2, along with a silent, **non-programmable** calculator. There are reference charts on pages 2-3 for part 2.

Clearly show your work and answer.

Part 1) Worth 5 points (conceptual questions)


Part 2) Worth 45 points

(NOTE: The loads, bracing and end support conditions can and will be changed for the quiz! The unit system will not change.)

A 6 m tall, 125 mm x 200 mm (metric) glu-lam column is braced in the weak axis (y-y) at 3.2 m from the base. The ends can be considered to be pinned. The cross section and timber have the following properties:

 $A = 25 \times 10^3 \text{ mm}^2$ $F_c = 13.8 \text{ MPa}$ E = 12,400 MPa $E'_{min} = 6300 \text{ MPa}$

- a) If the column is to support 180 kN, is it adequate for Allowable Stress Design assuming permanent dead load duration?
- b) If a lateral load of 1500 N is applied as shown to the 20 mm thick top bracing connected to the column, what size and how many nails would be needed (economically) using the capacity chart provided on the reference pages?

Answers - Not provided on actual quiz!

a)
$$P_{\text{allowable}} = 133 \text{ kN} \therefore \text{No Good} \qquad (P_{\text{weak}} = 176 \text{ kN})$$

b) 2-40d nails (by total length and capacity)

Disclaimer: Answers have NOT been painstakingly researched.

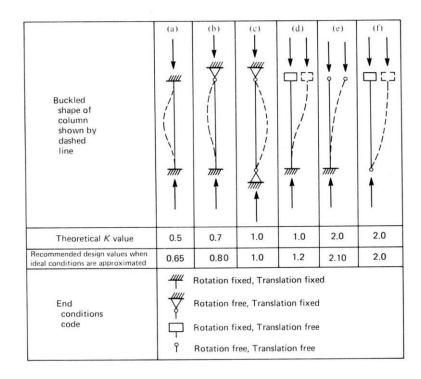
REFERENCE CHARTS FOR QUIZ 7

																							_					_						_						_			
		Glu-Lam	c,	0.962	0.963	0.964	0.965	0.965	0.966	0.966	0.967	0.968	0.968	0.969	0.969	0.969	0.970	0.970	0.971	126.0	0.972	0.972	0.972	0.973	0.973	0.974	0.974	0.974	0.975	0.975	0.975	0.975	0.976	0.976	0.981	0.986	0.989	0.995	0.997	0.998	0.999	0.999	
		Sawed	c,	0.930	0.931	0.933	0.934	0.936	0.937	0.938	0.938	0.939	0.940	0.941	0.942	0.943	0.944	0.944	0.945	0.946	0.947	0.947	0.948	0.949	0.949	0.950	0.950	0.951	0.952	0.952	0.953	0.953	0.954	0.955	0.963	0.973	0.979	0660	0.995	0.997	0.998	0.999	
		ECE ECE	2	3.40	3.45	3.55	3.60	3.65	3.70	3.75	3.80	3.85	3.90	3.95	4.00	4.05	4.10	4.15	4.20	4.25	4.30	4.35	4.40	4.45	4.50	4.55	4.60	4.65	4.70	4.75	4.80	4.85	4.90	5.00	6.00	8.00	10.0	20.0	40.0	60.0	100.0	200.0	
		Glu-Lam	c,	0.921	0.922	0.925	0.926	0.927	0.928	0.929	0:930	0.931	0.932	0.932	0.933	0.934	0.935	0.936	0.937	0.937	0.938	0.939	0.940	0.941	0.943	0.944	0.946	0.947	0.949	0.950	0.951	0.952	0.953	0.954	0.955	0.956	0.957	0.958	0.959	0960	0.961	0.961	
		Sawed O	ڻ ک	0.867	0.869	0.872	0.874	0.875	0.876	0.878	0.879	0.881	0.882	0.883	0.885	0.886	0.887	0.888	0.889	0.891	0.892	0.893	0.894	0.897	0.899	0.901	0.904	0.906	0.908	0.910	0.912	0.914	0.916	0.917	0.919	0.920	0.922	0.923	0.925	0.926	0.927	0.929	
		E.	;	2.00	2.02	2.06	2.08	2.10	2.12	2.14	2.16	2.18							2.32			2.38	2.40		2.50					_		2.85				_		_	_	3.25	3.30	3.35	gton.
۱	2	E																_																								_	Washin
	$\frac{.418E}{(l/d)^2}$ for glu-lam posts	Glu-Lam	ບ"	0.822	0.826	0.836	0.840	0.844	0.848	0.852	0.855	0.859	0.862	0.865	0.868	0.871	0.874	0.877	0.879	0.882	0.884	0.887	0.889	0.891	0.893	0.895	0.897	0.899	0.901	0.903	0.904	0.906	0.908	606'0	0.911	0.912	0.914	0.915	0.916	0.918	0.919	0.920	ersity of
	for glu-l	Sawed	ڻ'	0.750	0.755	0.764	0.769	0.773	0.777	0.781	0.785	0.789	0.793	0.796	0.800	0.803	0.807	0.810	0.813	0.816	0.819	0.822	0.825	0.827	0.830	0.832	0.835	0.837	0.840	0.842	0.844	0.846	0.849	0.851	0.853	0.855	0.857	0.858	0.860	0.862	0.864	0.868	tre, Univ
	.418 E (1/d) ²	FCE	Ŷ	1.20	122	1.26	1.28	1.30	1.32	1.34	1.36	1.38	1.40	1.42	1.44	1.46	1.48	1.50	1.52	1.54	1.56	1.58	1.60	1.62	1.64	1.66	1.68	1.70	1.72	1.74	1.76	1.78	1.80	1.82	1.84	1.86	1.88	1.90	1.92	1.94	1.96	1.98	Architectu
	Fcr =														_			_							_										_			_				_	pt. of 1
	posts	Glu-Lam	ບ້	0.667	0.672	0.683	0.688	0.693	0.698	0.703	0.708	0.713	0.718	0.722	0.727	0.731	0.735	0.740	0.744	0.748	0.752	0.756	0.760	0.764	0.767	0.771	0.774	0.778	0.781	0.784	0.788	0.791	0.794	0.797	0.800	0.803	0.806	0.809	0.811	0.814	0.817	0.819	ebert, De
	sawed	Sawed (ڻ'	0.610	0.614	0.623	0.628	0.632	0.637	0.641	0.645	0.649	0.653	0.658	0.661	0.665	0.669	0.673	0.677	0.680	0.684	0.688	0.691	0.694	0.698	0.701	0.704	0.708	0.711	0.714	0.717	0.720	0.723	0.726	0.729	0.731	0.734	0.737	0.740	0.742	0.745	0.747	ssor Ed L
	$\frac{.30 E}{(l/d)^2}$ for sawed posts $F_{CE} =$	E S	2	0.80	0.81	0.83	0.84	0.85	0.86	0.87	0.88	0.89	06.0	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	66.0	1.00	1.01	1.02	1.03	1.04	1.05	1.06	1.07	1.08	1.09	1.10	1.11	1.12	1.13	1.14	1.15	1.16	1.17	1.18	1.19	by Profe
			_																																								granted
	$F_c^{\prime} = C_p \cdot F_c^{\dagger} F_{CE} =$	Glu-Lam	ڻ ک	0.377	0.386	0.403	0.411	0.420	0.428	0.436	0.444	0.453	0.461	0.469	0.477	0.484	0.492	0.500	0.508	0.515	0.523	0.530	0.538	0.545	0.552	0.559	0.566	0.573	0.580	0.587	0.593	0.600	0.607	0.613	0.619	0.626	0.632	0.638	0.644	0.650	0.655	0.661	Table developed and permission for use granted by Professor Ed Lebert, Dept. of Architecture, University of Washington.
	$F_c^1 = 0$	Sawed	ڻ	0.360	0.367	0.383	0.390	0.398	0.405	0.412	0.419	0.427	0.434	0.441	0.448	0.454	0.461	0.468	0.474	0.481	0.487	0.494	0.500	0.506	0.512	0.518	0.524	0.530	0.536	0.542	0.548	0.553	0.559	0.564	0.569	0.575	0.580	0.585	0.590	0.595	0.600	0.605	l permiss
["C,"	FCE *	2	0.40	0.41	0.43	0.44	0.45	0.46	0.47	0.48	0.49	0.50	0.51	0.52	0.53	0.54	0.55	0.56	0.57	0.58	0.59	09.0	0.61	0.62	0.63	0.64	0.65	0.66	0.67	0.68	69.0	0.70	0.71	0.72	0.73	0.74	0.75	0.76	0.77	0.78	0.79	eloped and
•														_					_																							_	le deve
		Glu-Lam	ڻ'	0.00	0.010	020.0	0.040	0.050	0.060	0.069	0.079	0.089	660.0	0.109	0.118	0.128	0.138	0.147	0.157	0.167	0.176	0.186	0.195	0.205	0.214	0.224	0.233	0.242	0.252	0.261	0.270	0.279	0.288	0.297	0.306	0.315	0.324	0.333	0.342	0.351	0.360	0.368	Tab
		Sawed	ڻ'	0.000	0.010	0.030	0.040	0.049	0.059	0.069	0.079	0.088	0.098	0.107	0.117	0.126	0.136	0.145	0.154	0.164	0.173	0.182	0.191	0.200	0.209	0.218	0.227	0.235	0.244	0.253	0.261	0.270	0.278	0.287	0.295	0.304	0.312	0.320	0.328	0.336	0.344	0.352	
		FCE	į.	0.00	0.01	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.20	0.21	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.29	0.30	0.31	0.32	0.33	0.34	0.35	0.36	0.37	0.38	0.39	
								_	_	_	_			_	_	_	_			_	_		_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	-	

Table 14 Column Stability Factor Cp.

REFERENCE CHARTS FOR QUIZ 7

uctural Lumber	
for Str	
/alues	
lesign \	
for D	
Factors	
TABLE 5.2 Modification Factors for Design Values for Structural Lur tor Load Duration ^a	
TABLE 5.2 Mod for Load Duratio	


Load Duration	Multiply Design Values by:	Typical Design Loads
Permanent	0.9	Dead load
Ten years	1.0	Occupancy live load
Two months	1.15	Snow load
Seven days	1.25	Construction load
Ten minutes	1.6	Wind or earthquake load
Impact ^b	2.00	Impact load

Source: Adapted from the National Design Specification for Wood Construction, 2001 editi with permission of the publishers, American Forest & Paper Association.

Load duration factors shall not apply to modulus of elasticity, E, nor to compression perpendicular to grain design values, F_{ci} , based on a deformation limit.

*Load duration factors greater than 1.6 shall not apply to structural members pressure-treated with water-borne preservatives, or fire retardant chemicals. The impact load duration factor shall not apply to connections.

Lateral Load Capacity of common Wire Nails (N/nail)										
Side Member Thickness (mm)	Nail Length (mm)	Pennyweight	Load per Nail (N)							
Solid-Sawn Lumbe	er Side Members									
	65	8d	400							
	75	10d	467							
	90	16d	538							
20	100	20d	614							
20	115	30d	743							
	125	40d	787							
	140	50d	805							
	150	60d	885							
	75	10d	525							
	90	16d	627							
	100	20d	756							
40	115	30d	827							
	125	40d	912							
	140	50d	938							
	150	60d	1067							

