ARCH 614: Practice Quiz 4

Note: No aids are allowed for part 1. One side of a letter sized paper with notes is allowed during part 2, along with a silent, **non-programm**able calculator. There is a reference chart for part 2 on page 2.

Clearly show your work and answer.

Part 1) Worth 5 points (conceptual questions)

Part 2) Worth 45 points

(NOTE: The units, dimensions, and basic shapes <u>can and will</u> be changed for the quiz! The shape will most likely consist of a solid with a hole of some type.)

A beam has a maximum shear of V = 3.2 k, and maximum bending moment of M = 56 k-ft. If the beam has the cross section shape and reference origin as shown to the right, find:

- b) The moment of inertia about the x axis, I_x , of the section [or about the y axis, I_y].
- c) The maximum bending stress, f_b , about the x axis for the section [if I_x is determined in part b) or is given as 246.68 in.⁴].

	A (in ²)	\overline{x} (in)	$\overline{x}A$ (in ²)	\overline{y} (in)	$\overline{y}A$ (in ²)	I _x (in ⁴)	d _y (in)	Ady ² (in ⁴)
solid								
hole								
noie								

- a) $\hat{x} = -0.53$ in, $\hat{y} = 4.22$ in
- b) $I_x = 246.68 \text{ in}^4 \text{ [or } I_y = 238.88 \text{ in}^4 \text{]}$
- c) $f_{\rm b} = 11.7$ ksi

Disclaimer: Answers have NOT been painstakingly researched.

REFERENCE CHART FOR QUIZ 4

.

Geometric Properties of Areas

Rectangle	$\begin{array}{c c} y & y' \\ \hline \\ h \\ \hline \\ \hline$	$\bar{I}_{x'} = \frac{1}{12}bh^{3}$ $\bar{I}_{y'} = \frac{1}{12}b^{3}h$ $I_{x} = \frac{1}{3}bh^{3} about$ $I_{y} = \frac{1}{3}b^{3}h bottom$ $I_{y} = \frac{1}{2}b^{3}h left$ $J_{C} = \frac{1}{12}bh(b^{2} + h^{2})$	Area = bh \overline{x} = b/2 \overline{y} = h/2	
$\begin{array}{ c c }\hline Triangle \\ \bullet \\ \hline \bullet \\ \hline \hline \hline x \\ \bullet \\ \hline b \\ \hline \end{array}$	$\frac{1}{b} \xrightarrow{c} \frac{1}{b} \xrightarrow{x'} x'$	$\bar{I}_{x'} = \frac{1}{36}bh^3$ $I_x = \frac{1}{12}bh^3$ $\bar{I}_{y'} = \frac{1}{36}b^3h$	Area = $\frac{bh}{2}$ $\overline{x} = \frac{b}{3}$ $\overline{y} = \frac{h}{3}$	
Circle		$\bar{I}_x = \bar{I}_y = \frac{1}{4}\pi r^4$ $J_O = \frac{1}{2}\pi r^4$	Area = $\pi r^2 = \pi d^2 / 4$ $\overline{x} = 0$ $\overline{y} = 0$	
Semicircle	y C C $r \rightarrow x$	$\bar{I}_x = 0.1098r^4$ $\bar{I}_y = \pi r^4 / 8$	Area = $\frac{\pi r^2}{2} = \frac{\pi d^2}{8}$ $\overline{x} = 0$ $\overline{y} = \frac{4r}{3\pi}$	
Quarter circle	$\begin{array}{c} y \\ \bullet C \\ \hline O \\ \leftarrow r \rightarrow \end{array} x$	$\bar{I}_x = 0.0549r^4$ $\bar{I}_y = 0.0549r^4$	Area = $\frac{\pi r^2}{4} = \frac{\pi d^2}{16}$ $\overline{x} = \frac{4r}{3\pi}$ $\overline{y} = \frac{4r}{3\pi}$	
Ellipse		$\bar{I}_x = \frac{1}{4}\pi ab^3$ $\bar{I}_y = \frac{1}{4}\pi a^3 b$ $J_o = \frac{1}{4}\pi ab(a^2 + b^2)$	Area = πab $\overline{x} = 0$ $\overline{y} = 0$	
Semiparabolic area		$ar{I}_{x}$ = 16ah $^{3}/$ 175	Area = $\frac{4ah}{3}$	
Parabolic area		${ar I}_y$ = 4a³h $/$ 15	$\overline{x} = 0$ $\overline{y} = \frac{3h}{5}$	
Parabolic span- drel	$a \xrightarrow{a} h$	$ar{I}_x$ = 37ah $^3/$ 2100 $ar{I}_y$ = a 3 h $/$ 80	Area = $\frac{ah}{3}$ $\overline{x} = \frac{3a}{4}$ $\overline{y} = \frac{3h}{10}$	