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Beam Stresses – Bending and Shear 

 

Notation: 

A = name for area 

Aweb = area of the web of a wide flange 

section 

b = width of a rectangle 

 = total width of material at a 

horizontal section 

c = largest distance from the neutral 

axis to the top or bottom edge of a 

beam 

d = calculus symbol for differentiation 

 = depth of a wide flange section 

dy = difference in the y direction 

between an area centroid ( y ) and 

the centroid of the composite shape 

( ŷ ) 

E =  modulus of elasticity or Young’s 

modulus 

fb = bending stress 

fc = compressive stress 

fmax = maximum stress 

ft = tensile stress 

fv = shear stress 

Fb = allowable bending stress 

Fconnector 
 
= shear force capacity per 

connector 

h = height of a rectangle 

I = moment of inertia with respect to 

neutral axis bending 

Ix = moment of inertia with respect to 

an x-axis  

L = name for length 

M = internal bending moment 

 = name for a moment vector 

n = number of connectors across a joint 

n.a. = shorthand for neutral axis (N.A.) 

O = name for reference origin 

p = pitch of connector spacing 

P = name for a force vector 

q = shear per length (shear flow) 

Q = first moment area about a neutral 

axis 

Qconnected = first moment area about a neutral 

axis for the connected part 

R = radius of curvature of a deformed 

beam 

S = section modulus 

Sreq’d = section modulus required at 

allowable stress 

tw = thickness of web of wide flange 

V = internal shear force 

Vlongitudinal
 
= longitudinal shear force 

VT = transverse shear force 

w = name for distributed load 

x = horizontal distance 

y = vertical distance 

y  = the distance in the y direction from 

a reference axis (n.a) to the centroid 

of a shape  

ŷ  = the distance in the y direction from 

a reference axis to the centroid of a 

composite shape 

  = calculus symbol for small quantity 

  = elongation or length change 

  = strain 

  = arc angle  

  = summation symbol 

 

 

Pure Bending in Beams 

 

With bending moments along the axis of the member only, a beam is 

said to be in pure bending.  
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Normal stresses due to bending can be found for 

homogeneous materials having a plane of symmetry 

in the y axis that follow Hooke’s law. 
 

 

 

 

Maximum Moment and Stress Distribution 

 

In a member of constant cross section, the maximum bending moment will govern the design of 

the section size when we know what kind of normal stress is caused by it. 

 

For internal equilibrium to be maintained, the bending moment will be equal to the M from the 

normal stresses  the areas  the moment arms.  Geometric fit helps solve this statically 

indeterminate problem: 

 

1. The normal planes remain normal for pure bending. 

2. There is no net internal axial force. 

3. Stress varies linearly over cross section. 

4. Zero stress exists at the centroid and the line of centroids is the neutral axis (n. a)

x 

y 
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Relations for Beam Geometry and Stress 

 

Pure bending results in a circular arc deflection.  R is the distance 

to the center of the arc;  is the angle of the arc (radians); c is the 

distance from the n.a. to the extreme fiber; fmax is the maximum 

normal stress at the extreme fiber; y is a distance in y from the 

n.a.; M is the bending moment; I is the moment of in zertia; S is 

the section modulus. 

 

 

 

 

 

 

 

Now: for a rectangle of height h and width b: 

  

 

RELATIONS: 

 

 

 

 

 

 

 

 
*Note:  y positive goes DOWN.  With a positive M and y to the bottom fiber as positive, it results in a TENSION 

stress (we’ve called positive). 

 

 

 

Transverse Loading in Beams 

 

We are aware that transverse beam loadings result in internal 

shear and bending moments.  

 

We designed sections based on bending stresses, since this stress 

dominates beam behavior. 

 

There can be shear stresses horizontally within a beam member.  

It can be shown that verticalhorizontal ff   

 

R 

 

L 

y 

c 

½  ½  

RL  R
L





maxf
c

y
Ef  

S

M

I

Mc
f maxii AfM 

c

I
S 

I

My
fb 

AyI 2

6
2

12

23 bh

h

bh
S 

EI

M

R


1 *

I

My
fb 

S

M

I

Mc
fb max

c

I
S 

b

required
F

M
S 

ii Ay
c

f
M 2max 



ARCH 614 Note Set 9 S2011abn 

 4 

x
I

QV
V T

allongitudin 

dAfdAfV CD 

Equilibrium and Derivation 

 

In order for equilibrium for any element CDD’C’, there needs to be a horizontal force H. 

 

Q is a moment area with respect to the neutral axis of the area above or below the horizontal 

where the H occurs. 

 

Q is a maximum when y = 0 (at the neutral axis). 

 

q is a horizontal shear per unit length  shear flow 

 

 

Shearing Stresses 

 

avevf   = 0 on the beam’s surface.  Even if Q is a maximum at y = 0, we 

don’t know that the thickness is a minimum there. 

 

 

 

 

 

 

 

Rectangular Sections 

 

maxvf  occurs at the neutral axis: 

 

 

 

then: 
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Webs of Beams 

 

In steel W or S sections the thickness 

varies from the flange to the web. 

 

We neglect the shear stress in the flanges 

and consider the shear stress in the web 

to be constant: 

 

 

 

Webs of I beams can fail in tension shear across a 

panel with stiffeners or the web can buckle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shear Flow 

 

Even if the cut we make to find Q is not horizontal, but 

arbitrary, we can still find the shear flow, q, as long as the 

loads on thin-walled sections are applied in a plane of 

symmetry, and the cut is made perpendicular to the surface of 

the member. 

 

 

 

 

 

The shear flow magnitudes can 

be sketched by knowing Q. 
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Connectors to Resist Horizontal Shear in Composite Members 

 

Typical connections needing to resist shear are plates 

with nails or rivets or bolts in composite sections or 

splices. 

 

The pitch (spacing) can be determined by the 

capacity in shear of the connector(s) to the shear 

flow over the spacing interval, p. 

where  

 

p = pitch length 

 

n = number of connectors connecting the connected area to the rest of the cross section 

 

F = force capacity in one connector 

Qconnected area = Aconnected area  yconnected area 

 

yconnected area = distance from the centroid of the connected area to the neutral axis 

 

 

Connectors to Resist Horizontal Shear in Composite Members 

 

Even vertical connectors have shear flow across them. 

 

The spacing can be determined by the capacity in shear of the 

connector(s) to the shear flow over the spacing interval, p. 

 

 

Unsymmetrical Sections or Shear 

 

If the section is not symmetric, or has a shear not in that plane, the member can bend and twist.  

 

If the load is applied at the shear center 

there will not be twisting.  This is the 

location where the moment caused by 

shear flow = the moment of the shear 

force about the shear center.  
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Example 1  

 

 
 

 

 

 

ALSO:  Determine the minimum nail 

spacing required (pitch) if the shear 

capacity of a nail (F) is 250 lb. 
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Example 2 
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