BEAM DIAGRAMS AND FORMULAS For Various Static Loading Conditions, AISC ASD 8th ed.

1. SIMPLE BEAM-UNIFORMLY DISTRIBUTED LOAD

2. SIMPLE BEAM-LOAD INCREASING UNIFORMLY TO ONE END

3. SIMPLE BEAM-LOAD INCREASING UNIFORMLY TO CENTER

4. SIMPLE BEAM—UNIFORM LOAD PARTIALLY DISTRIBUTED

5. SIMPLE BEAM—UNIFORM LOAD PARTIALLY DISTRIBUTED AT ONE END

6. SIMPLE BEAM-UNIFORM LOAD PARTIALLY DISTRIBUTED AT EACH END

7. SIMPLE BEAM—CONCENTRATED LOAD AT CENTER

8. SIMPLE BEAM—CONCENTRATED LOAD AT ANY POINT

9. SIMPLE BEAM—TWO EQUAL CONCENTRATED LOADS SYMMETRICALLY PLACED

10. SIMPLE BEAM—TWO EQUAL CONCENTRATED LOADS UNSYMMETRICALLY PLACED

11. SIMPLE BEAM—TWO UNEQUAL CONCENTRATED LOADS UNSYMMETRICALLY PLACED

12. BEAM FIXED AT ONE END, SUPPORTED AT OTHER— UNIFORMLY DISTRIBUTED LOAD

13. BEAM FIXED AT ONE END, SUPPORTED AT OTHER— CONCENTRATED LOAD AT CENTER

14. BEAM FIXED AT ONE END, SUPPORTED AT OTHER— CONCENTRATED LOAD AT ANY POINT

15. BEAM FIXED AT BOTH ENDS—UNIFORMLY DISTRIBUTED LOADS

16. BEAM FIXED AT BOTH ENDS—CONCENTRATED LOAD AT

17. BEAM FIXED AT BOTH ENDS—CONCENTRATED LOAD AT ANY POINT

18. CANTILEVER BEAM—LOAD INCREASING UNIFORMLY TO FIXED END

21. CANTILEVER BEAM—CONCENTRATED LOAD AT ANY POINT

19. CANTILEVER BEAM-UNIFORMLY DISTRIBUTED LOAD

22. CANTILEVER BEAM—CONCENTRATED LOAD AT FREE END

20. BEAM FIXED AT ONE END, FREE TO DEFLECT VERTICALLY BUT NOT ROTATE AT OTHER—UNIFORMLY DISTRIBUTED LOAD

23. BEAM FIXED AT ONE END, FREE TO DEFLECT VERTICALLY BUT NOT ROTATE AT OTHER—CONCENTRATED LOAD AT DEFLECTED END

24. BEAM OVERHANGING ONE SUPPORT-UNIFORMLY DISTRIBUTED LOAD

25. BEAM OVERHANGING ONE SUPPORT-UNIFORMLY DISTRIBUTED LOAD ON OVERHANG

$$R_2 = V_1 + V_2 \qquad \qquad \qquad = \frac{wa}{2l} (2l + a)$$

$$V_2 \qquad \qquad \qquad = wa$$

$$V_{X_1} \qquad \text{(for overhang)} \qquad \qquad \qquad = w (a - x_1)$$

$$M \quad \text{max.} \left(\text{at } R_2 \right) \qquad \qquad \qquad = \frac{wa^2}{2}$$

$$M_X \qquad \left(\text{between supports} \right) \qquad \qquad = \frac{wa^2x}{2l}$$

$$M_{X_1} \qquad \left(\text{for overhang} \right) \qquad \qquad \qquad = \frac{w}{2} (a - x_1)^2$$

26. BEAM OVERHANGING ONE SUPPORT—CONCENTRATED LOAD AT END OF OVERHANG

BEAM OVERHANGING ONE SUPPORT-UNIFORMLY DISTRIBUTED LOAD BETWEEN SUPPORTS

BEAM OVERHANGING ONE SUPPORT—CONCENTRATED LOAD AT ANY POINT BETWEEN SUPPORTS

29. CONTINUOUS BEAM—TWO EQUAL SPANS—UNIFORM LOAD ON ONE SPAN

Total E	quiv	. U	nif	orn	n Lo	oad		=	$\frac{49}{64} w l$
R ₁ =V		•		ě	٠		÷	-	$\frac{7}{16}$ wl
$R_2 = V_2$	2+V3	i.	•	÷	•	·	ě	=	5 wl
R ₃ =V ₃		٠	•	٠	•	٠	٠	=-	$-\frac{1}{16}wl$
V ₂ .	٠	٠	٠	ŝ	٠	•	•	=	$\frac{9}{16}$ wl
M max	. (at	t x	= -	7	ı)	٠	٠	=	49 wl2
M ₁	(at	t sı	ıpp	ort	R	1)	•	=	$\frac{1}{16} wl^2$
Mx	(w	hei	n x	< .	1)	•		=	$\frac{wx}{16} (7l - 8x)$
Δ Max.								=	0.0092 wl4/EI

30. CONTINUOUS BEAM—TWO EQUAL SPANS—CONCENTRATED LOAD AT CENTER OF ONE SPAN

	Total	Eq	uiv.	U	nifo	rm	Lo	ad		=	13 P
	R1=1	/ 1	٠	٠					•	=	13 32 P
	R ₂ =\	/2+	-V3		9				•	=	11 P
13	R ₃ =\	/3	æ	٠	٠				٠		3 32 P
	V ₂	•	٠	•	ě	•	:•:		*	-	19 32 P
											13 Pl
	M ₁	9	(at	su	pp	ort	R ₂)	•	-	3 Pl
	Δ Ma	x. (0.4	80 2	fre	m	R	1		=	0.015 P/3 /FI

31. CONTINUOUS BEAM—TWO EQUAL SPANS—CONCENTRATED LOAD AT ANY POINT

R ₁ =V	1	•	3	è	٠	٠	į	÷	-	$\frac{Pb}{4l^3} \left(4l^2 - a(l+a)\right)$
R ₂ =V	2+	٧a						٠		$\frac{Pa}{2l^3} \bigg(2l^2 + b (l+a) \bigg)$
R ₃ =V	3	٠	٠		•		÷	•		$\frac{Pab}{4l^3}(l+a)$
V ₂	ě	٠	•	ě	٠	ě	•	٠	=	$\frac{Pa}{4l^3} \Big(4l^2 + b (l+a) \Big)$
M ma	x. (at	ро	int	of	loa	d)	٠		$\frac{Pab}{4l^3} \Big(4l^2 - a (l+a) \Big)$
M ₁	1	at	su	ממ	ort	R ₂)		_	$\frac{Pab}{4l^2}(l+a)$

32. BEAM—UNIFORMLY DISTRIBUTED LOAD AND VARIABLE END MOMENTS

$$R_{1} = V_{1} = \frac{wl}{2} + \frac{M_{1} - M_{2}}{l}$$

$$R_{2} = V_{2} = \frac{wl}{2} - \frac{M_{1} - M_{2}}{l}$$

$$V_{x} = w \left(\frac{l}{2} - x\right) + \frac{M_{1} - M_{2}}{l}$$

$$V_{3} \left(\text{at } x = \frac{l}{2} + \frac{M_{1} - M_{2}}{wl}\right)$$

$$= \frac{wl^{2}}{8} - \frac{M_{1} + M_{2}}{2} + \frac{(M_{1} - M_{2})^{2}}{2wl^{2}}$$

$$M_{3} = \frac{wx}{2} (l - x) + \left(\frac{M_{1} - M_{2}}{l}\right) x - M_{1}$$

$$\frac{1}{\sqrt{\frac{M_2}{l}}} = \frac{1}{\sqrt{\frac{l^2}{4} - \left(\frac{M_1 + M_2}{w}\right) + \left(\frac{M_1 - M_2}{wl}\right)^2}}{\sqrt{\frac{l^2}{4} - \left(\frac{M_1 + M_2}{w}\right) + \left(\frac{M_1 - M_2}{wl}\right)^2}}$$

$$\Delta_{x} = \frac{wx}{24EI} \left[x^{2} - \left(2l + \frac{4M_{1}}{wl} - \frac{4M_{2}}{wl} \right) x^{2} + \frac{12M_{1}}{w} x + l^{2} - \frac{8M_{1}l}{w} - \frac{4M_{2}l}{w} \right]$$

33. BEAM—CONCENTRATED LOAD AT CENTER AND VARIABLE END MOMENTS

$$R_1 = V_1 = \frac{P}{2} + \frac{M_1 - M_2}{l}$$

$$R_2 = V_2 = \frac{P}{2} - \frac{M_1 - M_2}{l}$$

$$M_3 \text{ (At center)} = \frac{Pl}{4} - \frac{M_1 + M_2}{2}$$

$$M_x \left(When x < \frac{l}{2} \right) = \left(\frac{P}{2} + \frac{M_1 - M_2}{l} \right) x - M_1$$

$$M_x\left(When x > \frac{l}{2}\right) = \frac{P}{2}(l-x) + \frac{(M_1 - M_2)x}{l} - M_1$$

$$\Delta_{x}\left(\text{When } x < \frac{l}{2}\right) = \frac{Px}{48Ei}\left(3l^{2} - 4x^{2} - \frac{8(l-x)}{Pl}\left[M_{1}(2l-x) + M_{2}(l+x)\right]\right)$$

