Architectural Structures: Form, Behavior, and Design

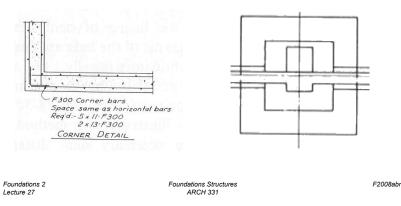
Arch 331 Dr. Anne Nichols Summer 2014

www.tamu.edu

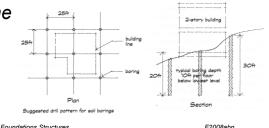
E2009abn

concrete construction: foundation design

Foundations 1 Lecture 23 Architectural Structures ARCH 331


Structural vs. Foundation Design

- structural design
 - choice of materials
 - choice of framing system
 - uniform materials and quality assurance
 - design largely independent of geology, climate, etc.


Foundation

• the engineered interface between the earth and the structure it supports that transmits the loads to the soil or rock

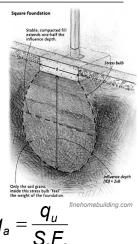
Structural vs. Foundation Design

- foundation design
 - cannot specify site materials
 - site is usually predetermined
 - framing/structure predetermined
 - site geology influences foundation choice
 - no site the same
 - no design the same

Foundations 4 Lecture 27

Foundations Structures ARCH 331

Soil Properties & Mechanics


- unit weight of soil
- allowable soil pressure
- factored net soil pressure
- shear resistance
- backfill pressure
- cohesion & friction of soil
- effect of water
- settlement
- rock fracture behavior

F2008abn

Soil Properties & Mechanics

- compressibility
 - settlements
- strength
 - stability
 - shallow foundations
 - deep foundations
 - slopes and walls
 - ultimate bearing capacity, q_u
 - allowable bearing capacity, $q_a =$

F2008abr

Foundations 5 Lecture 27

Soil Properties & Mechanics

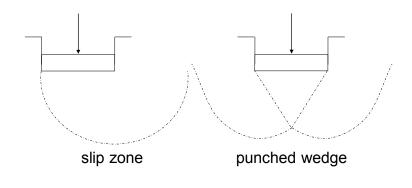
• strength, q_a

PRESUMPTIVE LOADBEARING VALUES OF FOUNDATION MATERIAL		
Class of material	Loadbearing pressure (pounds per square foot) ^a	
1. Crystalline bedrock	12,000	
2. Sedimentary rock	6,000	
3. Sandy Gravel	5,000	
4. Sand, silty sand, clayey sand, silty gravel and clayey gravel	3.000	
5. Clay, sandy clay, silty clay & clayey sil		

Foundations Structures

ARCH 331

FIGURE 2.5

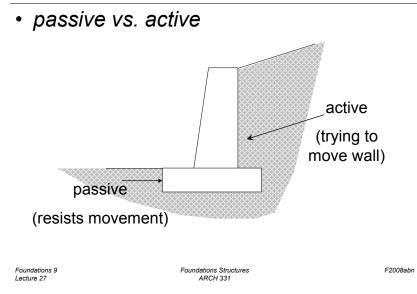

Presumptive surface bearing values of various soils, as given in the BOCA National Building Code/1996. (Reproduced by permission)

Bearing Failure

• shear

Foundations 6

Lecture 27


Foundations Structures

ARCH 331

Foundations 7 Lecture 27 F2008abn

Foundations Structures ARCH 331 F2011abn

Lateral Earth Pressure

Basic Foundation Requirements

- safe against instability or collapse
- no excessive/damaging settlements
- consider environment
 - frost action
 - shrinkage/swelling
 - adjacent structure, property lines
 - ground water
 - underground defects
 - earthquake
- economics

Foundations 11 Lecture 27

Foundations Structures ARCH 331

F2008abn

Foundation Materials

- concrete, plain or reinforced
 - shear
 - bearing capacity
 - bending
 - embedment length, development length
- other materials (piles)
 - steel
 - wood
 - composite

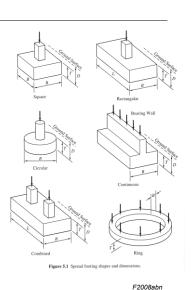
```
Foundations 10
Lecture 27
```

Foundations Structures ARCH 331

E2008abr

Generalized Design Steps

- calculate loads
- characterize soil
- determine footing location and depth
- evaluate soil bearing capacity
- determine footing size (unfactored loads)
- calculate contact pressure and check stability
- estimate settlements
- design footing structure* (factored loads)


Lecture 27

Types of Foundations

- spread footings
- wall footings
- eccentric footings
- combined footings
- unsymmetrical footings
- strap footings

Foundations 13

Lecture 27

Types of Foundations

Column

Pile Cap

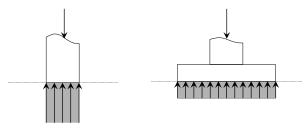
Piles or Other

Type of Deep Foundations

- mat foundations
- · retaining walls
- · basement walls
- pile foundations
- drilled piers

Foundations 14 Lecture 27

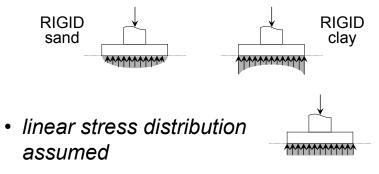
Foundations Structures ARCH 331 F2008abn


Shallow Footings

- spread footing
 - a square or rectangular footing supporting a single column

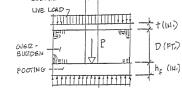
Foundations Structures

ARCH 331


 reduces stress from load to size the ground can withstand

Foundations 15 Lecture 27 Foundations Structures ARCH 331 F2008abn

Actual vs. Design Soil Pressure


- stress distribution is a function of
 - footing rigidity
 - soil behavior

Foundations 16 Lecture 27 Foundations Structures ARCH 331

Proportioning Footings

- net allowable soil pressure, q_{net}
 - $-q_{net} = q_{allowable} h_f(\gamma_c \gamma_s)$
 - considers all extra weight (overburden) from replacing soil with concrete
 - can be more overburden
- design requirement with total unfactored load: $\frac{P}{4} \leq q_{net}$

F2008abn

Foundations 17 Lecture 27 Foundations Structures ARCH 331

Concrete Spread Footings

• failure modes

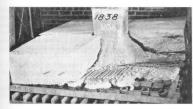
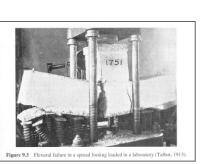



Figure 9.2 "Shear" failure in a spread footing loaded in a laboratory (Talbot, 1913). Observe how this failure actually is a combination of tension and shear.

shear

bending

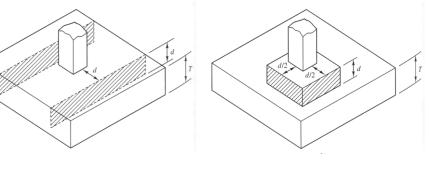
Foundations 19 Lecture 27 Foundations Structures ARCH 331

Concrete Spread Footings

- plain or reinforced
- ACI specifications
- *P_u* = combination of factored D, L, W
- ultimate strength

$$-V_u \leq \phi V_c$$
 : $\phi = 0.75$ for shear

• plain concrete has shear strength


 $-M_u \le \phi M_n$: $\phi = 0.9$ for flexure

Foundations	18
Lecture 27	

Foundations Structures ARCH 331 F2008abr

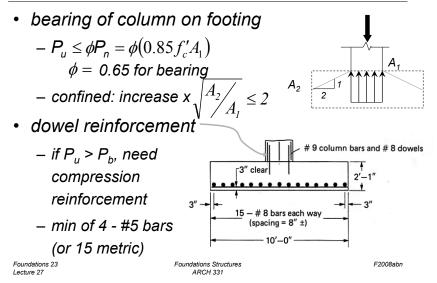
Concrete Spread Footings

• shear failure

one way shear

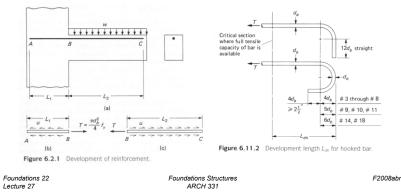
two way shear

Foundations 20 Lecture 27 Foundations Structures ARCH 331

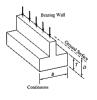

Over and Under-reinforcement

- reinforcement ratio for bending
 - $-\rho = \frac{A_s}{bd}$
 - use as a design estimate to find A_s , b, d
 - max ρ from $\varepsilon_{\text{steel}} \ge 0.004$
 - minimum for slabs & footings of uniform thickness $\frac{A_s}{bh} = 0.002$ grade 40/50 bars = 0.0018 grade 60 bars

Foundations 21
Lecture 27

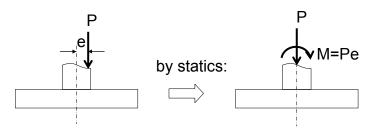

Foundations Structures ARCH 331 F2008abr

Column Connection


Reinforcement Length

- need length, ℓ_d
 - bond
 - development of yield strength

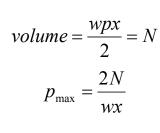
Wall Footings

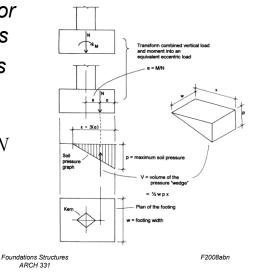

- *continuous strip for load bearing walls*
- plain or reinforced
- behavior
 - wide beam shear
 - bending of projection
- dimensions usually dictated by codes for residential walls
- light loads

Foundations 24 Lecture 27

Eccentrically Loaded Footings

• footings subject to moments


 soil pressure resultant force <u>may not</u> <u>coincide</u> with the centroid of the footing


Foundations 25	Fo
Lecture 27	

Indations Structures	
ARCH 331	

Kern Limit

- boundary of e for no tensile stress
- triangular stress block with p_{max}

F2008abn

Differential Soil Pressure

- to avoid large rotations, limit the differential soil pressure across footing
- for rigid footing,
 simplification of soil
 pressure is a linear
 distribution based on

Foundations	26
Lecture 27	

Foundations Structures ARCH 331 F2008abn

Μ

Guidelines

- want resultant of load from pressure inside the middle third of base (kern)
 - ensures stability with respect to overturning

$$SF = \frac{M_{resist}}{M_{overturning}} = \frac{R \cdot x}{M} \ge 1.5$$

- pressure under toe (maximum) $\leq q_a$
- shortcut using uniform soil pressure for design moments gives similar steel areas

Foundations 28 Lecture 27 Foundations Structures ARCH 331 F2008abn

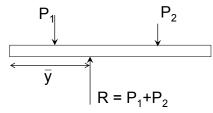
Foundations 27 Lecture 27

Combined Footings

- supports two columns
- used when space is tight and spread footings would overlap or when at property line

- soil pressure might not be uniform
- proportion so pressure will uniform for sustained loads
- behaves like beam lengthwise

Foundations	29
Lecture 27	


Foundations Structures ARCH 331

Proportioning

- uniform settling is desired
- area is proportioned with sustained column loads
- want the resultant to coincide with centroid of footing area for uniformly distributed pressure

assuming a rigid footing

 $q_{max} \leq q_a$

Foundations 31 Lecture 27

F2008abr

F2008abr

Combined Footing Types

- rectangular
- trapezoid

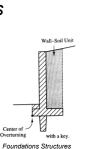
- strap or cantilever
 - prevents overturning of exterior column

|--|--|--|--|--|--|

- raft/mat
 - more than two columns over an extended area

Foundations 30 Lecture 27

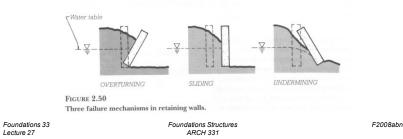
Foundations Structures ARCH 331


F2008abn

Retaining Walls

- purpose
 - retain soil or other material
- basic parts
 - wall & base
 - additional parts
 - counterfort
 - buttress
 - key

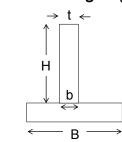
Foundations 32


Lecture 27

Retaining Walls

- considerations
 - overturning
 - settlement
 - allowable bearing pressure
 - sliding
 - (adequate drainage)

Retaining Wall Proportioning


- estimate size
 - footing size, B $\approx 2/5 2/3$ wall height (H)
 - footing thickness $\approx 1/12$ 1/8 footing size (B)

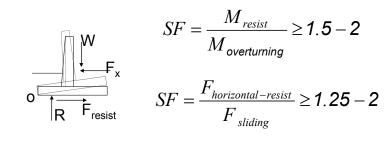
>12"

– base of stem

 \approx 1/10 - 1/12 wall height (H+h_f)

– top of stem

Foundations 35 Lecture 27


Foundations Structures ARCH 331

F2008abn

h,

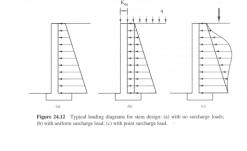
Retaining Walls

- procedure
 - proportion and check stability with working loads for bearing, <u>overturning</u> and <u>sliding</u>
 - design structure with factored loads

Foundations 34 Lecture 27

Foundations 36

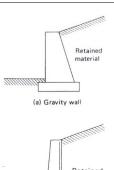
Lecture 27


Foundations Structures ARCH 331 F2008abr

Retaining Walls Forces

- design like cantilever beam
 - $-V_{\mu} \& M_{\mu}$ for reinforced concrete

–
$$V_u \leq \phi V_c$$
 : $\phi = -0.75$ for shear


$$-M_u \leq \phi M_n$$
: $\phi = 0.9$ for flexure

Foundations Structures ARCH 331

Retaining Wall Types

- "gravity" wall
 - usually unreinforced
 - economical & simple

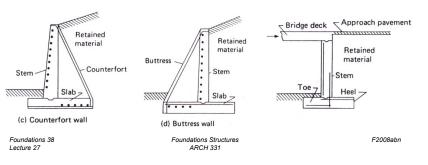
• cantilever retaining wall

– common

Stem Retained material Toe Heel (b) Cantilever retaining wall

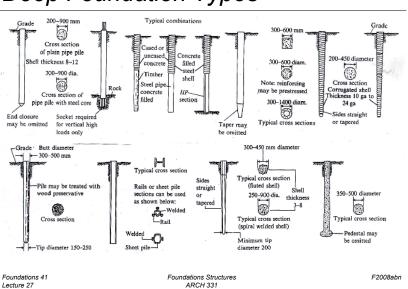
F2008abn

Foundations 37 Lecture 27 Foundations Structures ARCH 331

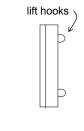

Deep Foundations

usage

- when spread footings, mats won't work
- when they are required to transfer the structural loads to good bearing material
- to resist uplift or overturning
- to compact soil
- to control settlements of spread or mat foundations


Retaining Wall Types

- counterfort wall
- buttress wall
- very tall walls (> 20 25 ft)
- bridge abutment
- basement frame wall (large basement areas)


Deep Foundation Types

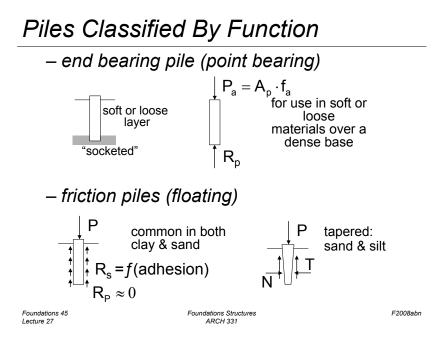
- piles usually driven, 6"-8" ϕ , 5' +
- piers
- caissons
- drilled shafts
- bored piles
- drilled, excavated, concreted (with or without steel)
 - 2.5' 10'/12'ø
- pressure injected piles

Piles Classified By Material

- timber
 - use for temporary construction
 - to densify loose sands
 - embankments
 - fenders, dolphins (marine)
- concrete
 - precast: ordinary reinforcement or prestressed
 - designed for axial capacity and bending with handling

Deep Foundation Types

Deep Foundations

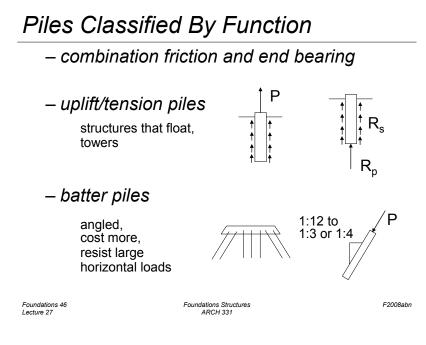

- classification
 - by material
 - by shape
 - by function (structural, compaction...)
- pile placement methods
 - driving with pile hammer (noise & vibration)
 - driving with vibration (quieter)
 - jacking
 - drilling hole & filling with pile or concrete

Foundations 42 Lecture 27 Foundations Structures ARCH 331 F2008abn

Piles Classified By Material

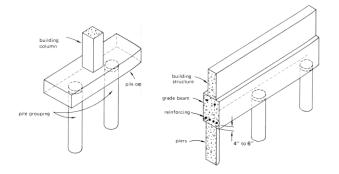
- steel
 - rolled HP shapes or pipes
 - pipes may be filled with concrete
 - HP displaces little soil and may either break small boulders or displace them to the side

Foundations 43 Lecture 27


Piles Classified By Function

- fender piles, dolphins, pile clusters

large # of piles in a small area



- compaction piles
 - used to densify loose sands
- drilled piers
 - eliminate need for pile caps
 - designed for bearing capacity (not slender)

Pile Caps and Grade Beams

- like multiple column footing
- more shear areas to consider

Foundations 48 Lecture 27 Foundations Structures ARCH 331 F2008abn

Foundations 47 Lecture 27