ARCHITECTURAL **S**TRUCTURES: FORM, BEHAVIOR, AND DESIGN

ARCH 331 **DR.** ANNE NICHOLS SUMMER 2014

lecture ty two

concrete construction." flat spanning systems, columns & frames F2009abn

Reinforced Concrete Design

- flat plate
 - 5"-10" thick

- lower story heights

- simple formwork

- flat slab
 - same as plate
 - $-2 \frac{1}{4}$ -8" drop panels

Two-way jois (wide module Square Bay Size Concrete Spans 2 Foundations Structures

ARCH 331

Reinforced Concrete Design

Reinforced Concrete Design

economical & common

resist lateral loads

0.7

Cost Index 0

Lecture 25

- beam supported
 - slab depth ~ L/20
 - 8"-60" deep
- one-way joists
 - 3"-5" slab
 - 8"-20" stems
 - 5"-7" webs

way jois

F2008abr

The Architect's Studio Companion

Concrete Spans 3 Lecture 25

Foundations Structures ARCH 331

F2008abn

Concrete Spans 4 Lecture 25

Foundations Structures ARCH 331

Reinforced Concrete Design

- two-way joist
 - "waffle slab"
 - 3"-5" slab
 - 8"-24" stems
 - 6"-8" webs
- beam supported slab
 - 5"-10" slabs
 - taller story heights

Reinforced Concrete Design

- simplified frame analysis
 - strips, like continuous beams
- moments require flexural reinforcement
 - top & bottom

Concrete Spans 6

Lecture 25

- both directions of slab
- continuous, bent or discontinuous

F2008abn

Concrete Spans 5 Lecture 25 Foundations Structures ARCH 331

F2008abn

Reinforced Concrete Design

- one-way slabs (wide beam design)
 - approximate analysis for moment & shear coefficients
 - two or more spans
 - ~ same lengths
 - $-w_u$ from combos
 - uniform loads with $L/D \le 3$
 - l_n is clear span (+M) or average of adjacent clear spans (-M)

Uniformly Distributed Load (L/D ≤ 3) -

Reinforced Concrete Design

Foundations Structures

ARCH 331

Concrete Spans 7 Lecture 25 F2008abn

Concrete Spans 8 Lecture 25 Foundations Structures ARCH 331

Reinforced Concrete Design

- two-way slabs Direct Design Method
 - 3 or more spans each way
 - uniform loads with $L/D \leq 3$
 - rectangular panels with long/short span ≤ 2
 - successive spans can't differ > longer/3
 - column offset no more than 10% span

F2008abn

Concrete Spans 9 Lecture 25

Foundations Structures ARCH 331

Shear in Concrete

- at columns
- want to avoid stirrups
- can use shear studs or heads

Concrete Spans 11 Lecture 25

Foundations Structures ARCH 331

F2008abn

Reinforced Concrete Design

	End Span ① ②		Inter	ior Span @	6	
		End Span		Interior Span		
Span ratio	Slab Moments	1 Exterior Negative	2 Positive	3 First Interior Negative	4 Positive	5 Interio Negativ
શ્વ/લ	Total Moment	0.16 M _o	0.57 Mo	0.70 M ₀	0.35 M ₀	0.65 M
0.5	Column Strip Beam Slab Middle Strip	0.12 M ₀ 0.02 M ₀ 0.02 M ₀	0.43 M _o 0.08 M _o 0.06 M _o	0.54 M _o 0.09 M _o 0.07 M _o	0.27 M _o 0.05 M _o 0.03 M _o	0.50 M 0.09 M 0.06 M
1.0	Column Strip Beam Slab	0.10 M _o 0.02 M _o	0.37 M ₀ 0.06 M ₀ 0.14 M ₀	0.45 M ₀ 0.08 M ₀ 0.17 M ₀	0.22 M ₀ 0.04 M ₀ 0.09 M ₀	0.42 M 0.07 M 0.16 M
2.0	Column Strip Beam Slab	0.06 M _o 0.01 M _o	0.22 M _o 0.04 M _o	0.27 M _o 0.05 M _o	0.14 M _o 0.02 M _o	0.25 M 0.04 M

Table 4-6 Two-Way Beam-Supported Slab

(4) Concentrated loads applied directly to beams must be accounted for separately

Concrete Spans 10 Lecture 25

Lecture 25

Notes

Foundations Structures ARCH 331

F2008abr

Shear in Concrete

- critical section at d/2 from
 - column face, column capital or drop panel

Shear in Concrete

• at columns with waffle slabs

Concrete Spans 13 Lecture 25

Foundations Structures http:// nisee.berkeley.edu/godden F2008abn ARCH 331

General Beam Design

- $f'_c \& f_v$ needed
- usually size just b & h
 - even inches typical (forms)
 - similar joist to beam depth
 - b:h of 1:1.5-1:2.5
 - $-b_w \& b_f$ for T
 - to fit reinforcement + stirrups
- slab design, t
 - deflection control & shear

Concrete Spans 15 Lecture 25 Foundations Structures ARCH 331

F2008abn

Openings in Slabs

- careful placement of holes
- shear strength reduced
- bending & deflection can increase

Concrete Spans 14 Lecture 25

General Beam Design (cont'd)

- custom design:
 - longitudinal steel
 - shear reinforcement
 - detailing

Concrete Spans 16 Lecture 25 Foundations Structures ARCH 331

Space "Frame" Behavior

- handle uniformly distributed loads well
- bending moment

Space "Frame" Behavior

- shear at columns
- support conditions still important
 point supports not optimal
- fabrication/construction can dominate design

Folded Plates

Concrete Spans 17

Lecture 25

• increased bending stiffness with folding

Foundations Structures

ARCH 331

• lateral buckling avoided

Concrete Spans 19 Lecture 25 Foundations Structures ARCH 331

roof plan

F2008abn

F2008abn

Folded Plates

- common for roofs
- edges need stiffening

Concrete Spans 20 Lecture 25

Foundations Structures ARCH 331

Folded Plates

 Edge-supported dome spanning 400 feet wound with 614 miles of one-fifth inch steel wire

Concrete Spans 21 Lecture 25 Architectural Structures ARCH 331

Columns Reinforcement

- columns require
 - ties or spiral reinforcement to "confine" concrete (#3 bars minimum)

F2008abr

minimum amount of longitudinal steel
 (#5 bars minimum: 4 with ties, 5 with spiral)

Concrete in Compression

- crushing
- vertical cracking
 - tension
- diagonal cracking
 - shear

http://www.bam.de

Concrete Columns 2 Lecture 26

Foundations Structures ARCH 331 F2008abn

Slenderness

- effective length in monolithic with respect to stiffness of joint: Ψ& k
- not slender when $kL_u < 22$ 8 bars Column ≤ 18 in Field Erec 20 in., 22 in., and 24 in. colum ice \geq greater of $\begin{pmatrix} 1.3 \\ 12 \end{pmatrix}$ -ACE . 12 bar 6060 All 12 ber errar PROEMEN 16 Ea Field Erection All 16 bar arrangement Fixed Figure 5-7 Column Tie Details F2008ahn Concrete Columns 4 Foundations Structures Lecture 26 ARCH 331

Column Behavior

Column Design

- $\phi_c = 0.65$ for ties, $\phi_c = 0.75$ for spirals
- P_o no bending

$$P_o = 0.85 f'_c (A_g - A_{st}) + f_y A_{st}$$

• $P_u \le \phi_c P_n$

$$- \text{ ties: } P_n = 0.8P_o$$
$$- \text{ spiral: } P_n = 0.85P_o$$

- nominal axial capacity:
 - presumes steel yields
 - concrete at ultimate stress

 $C_2 = f_r A_1$ $C_3 = f_r A_2$ $C_1 = 0.85 f_c' (A_g - A_{st})$

F2008abn

Columns with Bending

- eccentric loads can cause moments
- moments can change shape and induce more deflection

Concrete Columns 8

Lecture 26

Figure 10.6 Considerations for development of bending in steel columns; (a) bending induced by eccentric load, (b) bending transferred to column in a rigid frame, and (c) combined loading condition, separately producing axial compression and bending.

Foundations Structures ARCH 331 F2008abn

Concrete Columns 7 Lecture 26

Columns with Bending

• for ultimate strength behavior, ultimate strains can't be exceeded

ARCH 331

ARCH 331

Concrete Columns 9 Lecture 26

Design Methods

- calculation intensive
 - handbook charts
 - computer programs

Columns with Bending

- need to consider combined stresses
- linear strain
- steel stress at or below f_v
- plot <u>interaction</u> diagram


```
Concrete Columns 10
Lecture 26
```

Foundations Structures ARCH 331 F2009abn

Design Considerations

- bending at both ends
 - P-∆ maximum
- biaxial bending
- walls
 - unit wide columns 🏧
 - "deep" beam shear
- detailing

Concrete Columns 12

Lecture 26

- shorter development lengths

Foundations Structures

ARCH 331

- dowels to footings

Figure 12-1 Biaxial Interaction Surface

F2008abn

8

rolum