
ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 331 DR. ANNE NICHOLS SUMMER 2014

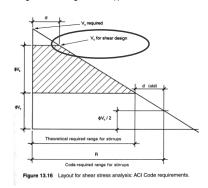
lecture

Copyright © Kirk Martini

concrete construction: shear & deflection

Concrete Shear 1

Architectural Structures

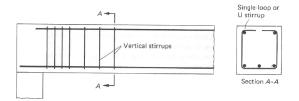

F2009abn

ACI Shear Values

- *V_u* is at distance d from face of support
- shear capacity:

$$V_c = v_c \times b_w d$$

- where b_w means thickness of web at n.a.


Concrete Shear 3 Lecture 24

Foundations Structures ARCH 331

F2008abr

Shear in Concrete Beams

- flexure combines with shear to form diagonal cracks
- horizontal reinforcement doesn't help
- stirrups = vertical reinforcement

Concrete Shear 2 Lecture 24

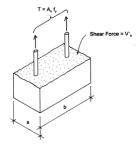
Foundations Structures ARCH 331

F2008abn

ACI Shear Values

• shear stress (beams)

$$- v_c = 2\sqrt{f'_c} \qquad \phi = 0.75 \text{ fo}$$


$$\phi V_c = \phi 2\sqrt{f'_c} b_w d \qquad f'_c \text{ is in } \underline{psi}$$

 ϕ = 0.75 for shear

shear strength:

$$V_u \le \phi V_c + \phi V_s$$

- V_s is strength from stirrup reinforcement

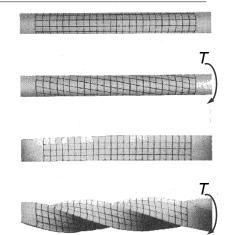
Concrete Shear 4 Lecture 24

Foundations Structures ARCH 331

F2008abr

Stirrup Reinforcement

· shear capacity:


$$V_s = \frac{A_v f_y d}{s}$$

- $-A_{v}$ = area in all legs of stirrups
- -s = spacing of stirrup
- may need stirrups when concrete has enough strength!

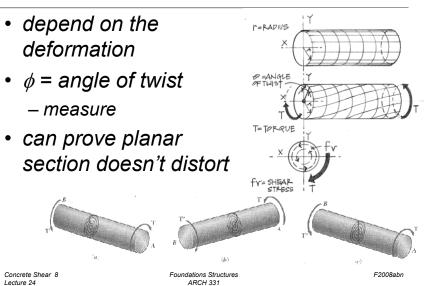
Concrete Shear 5 Lecture 24 Foundations Structures ARCH 331 F2008abn

Torsional Stress & Strain

- can see torsional stresses & twisting of axi-symmetrical cross sections
 - torque
 - remain plane
 - undistorted
 - rotates
- not true for square sections....

Required Stirrup Reinforcement

· spacing limits


Table 3-8 ACI Provisions for Shear Design*

	- 1.20 (sign) - 1.20 (sign) - 1.20 (sign)	$V_u \le \frac{\phi V_c}{2}$	$\phi V_C \ge V_U > \frac{\phi V_C}{2}$	$V_{u} > \phi V_{c}$
Required area of stirrups, A _V **		none	50b _w s	(V _u – φV _c)s φf _y d
Stirrup spacing, s	Required		A _v f _y 50b _w	$\frac{\phi A_v f_y d}{V_u - \phi V_c}$
	Recommended Minimum [†]	=	<u>*</u>	4 in.
	Maximum†† (ACI 11.5.4)	_	d or 24 in.	$\frac{d}{2}$ or 24 in. for $(V_U - \phi V_C) \le \phi 4 \sqrt{f_C'} b_W d$
			e rogge	$\frac{d}{4}$ or 12 in. for $\left(V_{u} - \phi V_{c}\right) > \phi 4 \sqrt{f_{c}'} b_{w} d$

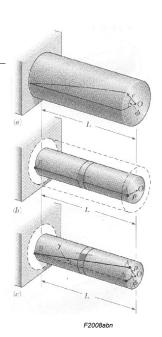
^{*}Members subjected to shear and flexure only; $\phi V_C = \phi 2 \sqrt{f_C} \ b_w d$, $\phi = \frac{9.85}{0.75} (ACI 11.3.1.1)$ **A_v = 2 × A_b for U stirrups; $f_v \le 60$ ksi (ACI 11.5.2)

Concrete Shear 6 Foundations Structures F2008abn
Lecture 24 ARCH 331

Shear Stress Distribution

Concrete Shear 7 Lecture 24

[†]A practical limit for minimum spacing is d/4


^{††}Maximum spacing based on minimum shear reinforcement (= A_vf_v/50b_w) must also be considered (ACI 11.5.5.3).

Shearing Strain

• related to ϕ

$$\gamma = \frac{\rho \phi}{L}$$

- ρ is the radial distance from the centroid to the point under strain
- shear strain varies linearly along the radius: γ_{max} is at outer diameter

Concrete Shear 9

Foundations Structures

Torsional Stress - Strain

- know $f_v = \tau = G \cdot \gamma$ and $\gamma = \frac{\rho \phi}{I}$
- so $\tau = G \cdot \frac{\rho \phi}{I}$
- where G is the Shear Modulus

τ_{max} happens at <u>outer diameter</u>

Concrete Shear 10

Shear Stress

Foundations Structures

F2008abn

Torsional Stress - Strain

• from

$$T = \Sigma \tau(\rho) \Delta A$$

· can derive

- where J is the polar moment of inertia
- elastic range

F2008abr

Foundations Structures ARCH 331

stress at 45° "twisted" plane

- maximum shear

axial stresses

combined shear and

Concrete Shear 12 Lecture 24

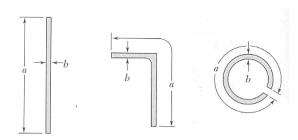
Foundations Structures ARCH 331

F2008ahn

Shear Strain

• knowing
$$au = \mathbf{G} \cdot \frac{\rho \phi}{L}$$
 and $au = \frac{T \rho}{J}$

• solve:
$$\phi = \frac{TL}{JG}$$


• composite shafts:
$$\phi = \sum_{i} \frac{T_{i}L_{i}}{J_{i}G_{i}}$$

Concrete Shear 13

Foundations Structures ARCH 331 F2008abn

Open Thin-Walled Sections

• with very large a/b ratios:

$$au_{\mathsf{max}} = \frac{T}{\frac{1}{3} \mathsf{ab}^2}$$

 $\phi = \frac{TL}{\frac{1}{3}ab^3G}$

Concrete Shear 15 Lecture 24 Foundations Structure

F2008abn

Noncircular Shapes

- torsion depends on J
- plane sections don't remain plane
- τ_{max} is still at outer diameter

$$\tau_{\text{max}} = \frac{T}{c_1 a b^2} \quad \phi = \frac{TL}{c_2 a b^3 G}$$

- where a is longer side (> b)

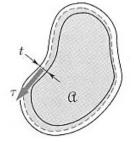
TABLE 21 Confficients for

TABLE 3.1. Coefficients for Rectangular Bars in Torsion

	ond Daio	111 10131011
a/b	c ₁	C 2
1.0	* 0.208	0.1406
1.2	0.219	0.1661
1.5	0.231	0.1958
2.0	0.246	0.229
2.5	0.258	0.249
3.0	0.267	0.263
4.0	0.282	0.281
5.0	0.291	0.291
10.0	0.312	0.312
∞	0.333	0.333

F2008abn

Concrete Shear 14 Lecture 24 Foundations Structures ARCH 331


Shear Flow in Closed Sections

q is the internal shear force/unit length

$$\tau = \frac{1}{2t\mathcal{Q}}$$

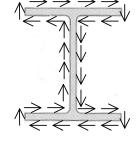
$$TL \quad \sum s$$

$$\phi = \frac{TL}{4t\mathcal{Q}^2} \sum_{i} \frac{s_i}{t_i}$$

- $oldsymbol{\cdot}$ ${\mathcal A}$ is the area bounded by the centerline
- s, is the length segment, t, is the thickness

Concrete Shear 16

Foundations Structures ARCH 331 F2008abn


Shear Flow in Open Sections

 each segment has proportion of T with respect to torsional rigidity,

$$\tau_{\text{max}} = \frac{Tt_{\text{max}}}{\frac{1}{3} \Sigma b_i t_i^3}$$

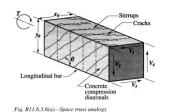
total angle of twist:

$$\phi = \frac{TL}{\frac{1}{3}G\Sigma b_i t_i^3}$$

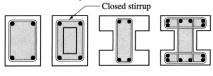
• I beams - web is thicker, so τ_{\max} is in \underline{web}

Concrete Shear 17 Lecture 24 Foundations Structur ARCH 331 F20

Concrete Shear 18 Lecture 24


Foundations Structures ARCH 331

F2008abn


(d)

Torsional Shear Reinforcement

- closed stirrups
- more longitudinal reinforcement

area enclosed by shear flow

Foundations Structures

ARCH 331

 A_{oh} = shaded area

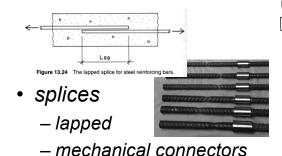
Fig. R11.6.3.6(b)—Definition of Aob

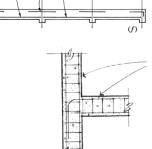
F2008abn

Torsional Shear Stress

- twisting moment
- and beam shear

(a) Hollow section




Shear stresses

(b) Solid section
Fig. R11.6.3.1—Addition of torsional and shear stresses

Development Lengths

- required to allow steel to yield (f_v)
- standard hooks
 - moment at beam end

F2008abn

Concrete Shear 20 Lecture 24 Foundations Structures ARCH 331

Concrete Shear 19 Lecture 24

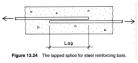
Development Lengths

- l_d , embedment required <u>both</u> sides
- proper cover, spacing:
 - No. 6 or smaller

$$l_d = \frac{d_b F_y}{25\sqrt{f_c'}}$$
 or 12 in. minimum

- No. 7 or larger

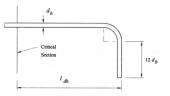
$$l_d = \frac{d_b F_y}{20\sqrt{f_s'}}$$
 or 12 in. minimum


Concrete Shear 21 Lecture 24 Foundations Structure ARCH 331 F2008abr

Development Lengths

bars in compression

$$l_d = \frac{0.02 d_b F_y}{\sqrt{f_c'}} \le 0.0003 d_b F_y$$


- splices
 - tension minimum is function of l_d and splice classification
 - compression minimum
 - is function of d_b and F_v

F2008abn

Development Lengths

- hooks
 - bend and extension

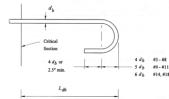
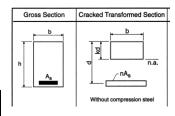


Figure 9-17: Minimum requirements for 90°bar hooks.

Figure 9-18: Minimum requirements for 180° bar hooks.


minimum

$$l_{dh} = \frac{1200 d_b}{\sqrt{f_c'}}$$

Concrete Shear 22 Lecture 24 Foundations Structures ARCH 331 F2008abr

Concrete Deflections

- elastic range
 - I transformed
 - $-E_c$ (with f'_c in psi)
 - normal weight concrete (~ 145 lb/ff³)

• concrete between 90 and 160 lb/ft3

- cracked
 - I cracked
 - E adjusted

Concrete Shear 24

Foundations Structures ARCH 331 F2008abn

Concrete Shear 23 Lecture 24 Foundations Structures ARCH 331

Deflection Limits

- relate to whether or not beam supports or is attached to a damageable nonstructural element
- need to check <u>service</u> live load and long term deflection against these

L/180	roof systems (typical) – live
L/240	floor systems (typical) – live + long term
L/360	supporting plaster – live
L/480	supporting masonry – live + long term

Concrete Shear 25

Foundations Structures ARCH 331 F2008abn