
ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN

ARCH 331 DR. ANNE NICHOLS SUMMER 2014

lecture nineteen

concrete construction: materials & beams

Concrete Beams 1 Lecture 19

Architectural Structures ARCH 331

F2009abn

Concrete Construction

- cast-in-place
- tilt-up

Lecture 22

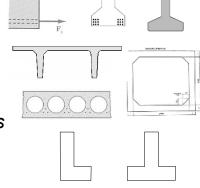
- prestressing
- post-tensioning

arch.mcgill.ca Concrete Beams 3

Foundations Structures ARCH 331

Concrete Beam Design

- composite of concrete and steel
- American Concrete Institute (ACI)
 - design for maximum stresses
 - limit state design
 - service loads x load factors
 - · concrete holds no tension
 - failure criteria is yield of reinforcement
 - failure capacity x reduction factor
 - factored loads < reduced capacity
 - concrete strength = f'_{c}


Concrete Beams 2 Lecture 22

Foundations Structures ARCH 331

F2008abn

Concrete Beams

- types
 - reinforced
 - precast
 - prestressed
- shapes
 - rectangular, I
 - T, double T's, bulb T's
 - -box
 - spandrel

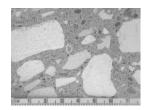
Concrete Beams 4


Foundations Structures ARCH 331

Concrete Beams

- shear
 - vertical
 - horizontal
 - combination:
 - tensile stresses at 45°
- bearing
 - crushing

http://urban.arch.virginia.edu

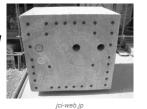


Concrete Beams 5 Lecture 22 Foundations Structures ARCH 331 F2008abn

Concrete

- low strength to weight ratio
- relatively inexpensive
 - Portland cement
 - types I V
 - aggregate
 - · course & fine
 - water
 - admixtures
 - air entraining
 - · superplasticizers

Concrete Beams 6 Lecture 22 Foundations Structures ARCH 331



F2008abn

Concrete

- hydration
 - chemical reaction
 - workability
 - water to cement ratio
 - mix design
- fire resistant
- cover for steel
- creep & shrinkage

Foundations Structures ARCH 331

F2008abn

Concrete

• placement (not pouring!)

vibrating

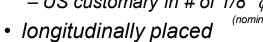
screeding

- floating
- troweling
- curing

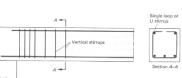
Concrete Beams 8

Lecture 22

finishing


Foundations Structures ARCH 331

Concrete Beams 7 Lecture 22


Reinforcement

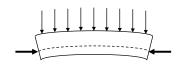
- deformed steel bars (rebar)
 - Grade 40, F_{y} = 40 ksi
 - Grade 60, F_v = 60 ksi most common
 - Grade 75, $F_{v} = 75 \text{ ksi}$
 - US customary in # of 1/8" ϕ

- bottom
- top for compression reinforcement

Concrete Beams 9 Lecture 22

Foundations Structures

F2008abn


welded to

heam W section

(c) Composite beam.

Reinforcement

- prestressing strand
- post-tensioning
- stirrups
- detailing
 - development length
 - anchorage
 - splices

Concrete Beams 10 Lecture 22

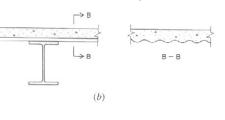
Foundations Structures ARCH 331

http:// nisee.berkeley.edu/godden F2008abn

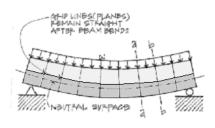
Composite Beams

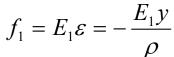
- concrete
 - in compression
- steel

Concrete Beams 11

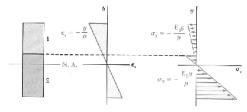

Lecture 22

- in tension
- shear studs





Foundations Structures F2008abn

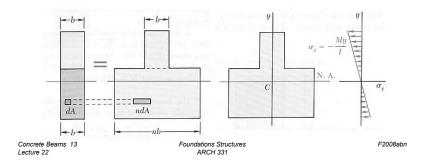

Behavior of Composite Members

- plane sections remain plane
- stress distribution changes

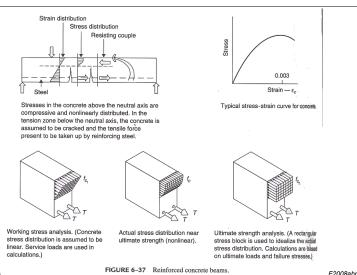
Lecture 22

$$f_2 = E_2 \varepsilon = -\frac{E_2 y}{\rho}$$

ARCH 331


F2008abr

Transformation of Material


• n is the ratio of E's

$$n = \frac{E_2}{E_1}$$

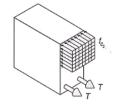
 effectively widens a material to get same stress distribution

Reinforced Concrete - stress/strain

Stresses in Composite Section

- with a section transformed to one material, new I
 - stresses in that material are determined as usual
 - stresses in the other material need to be adjusted by n

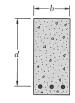
$$n = \frac{E_2}{E_1} = \frac{E_{steel}}{E_{concrete}}$$


$$f_c = -\frac{My}{I_{\textit{transformed}}}$$

$$f_s = -\frac{Myn}{I_{transformed}}$$

Concrete Beams 14 Lecture 22 Foundations Structures ARCH 331 F2008abn

Reinforced Concrete Analysis


- for stress calculations
 - steel is transformed to concrete
 - concrete is in compression above n.a. and represented by an equivalent <u>stress block</u>
 - concrete takes <u>no tension</u>
 - steel takes tension
 - force <u>ductile</u> failure



Concrete Beams 16 Lecture 22 Foundations Structures ARCH 331

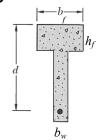
Location of n.a.

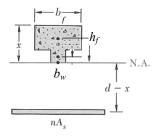
- ignore concrete below n.a.
- transform steel
- same area moments, solve for x

$$bx \cdot \frac{x}{2} - nA_s(d - x) = 0$$

Concrete Beams 17 Lecture 22 Foundations Structures ARCH 331 F2008abn

ACI Load Combinations*

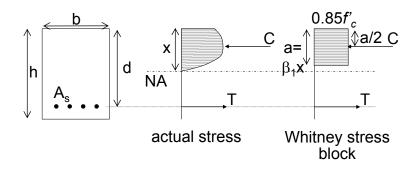

- 1.4D
- $1.2D + 1.6L + 0.5(L_r \text{ or S or R})$
- $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (1.0L \text{ or } 0.5W)$
- $1.2D + 1.0W + 1.0L + 0.5(L_r \text{ or } S \text{ or } R)$
- 1.2D + 1.0E + 1.0L + 0.2S
- 0.9D + 1.0W
- 0.9D + 1.0E


*can also use old ACI factors

F2011abn

T sections

 n.a. equation is different if n.a. below flange



$$b_{f}h_{f}\left(x-\frac{h_{f}}{2}\right)+\left(x-h_{f}\right)b_{w}\frac{\left(x-h_{f}\right)}{2}-nA_{s}(d-x)=0$$

Concrete Beams 18 Lecture 22 Foundations Structures ARCH 331 F2008abn

Reinforced Concrete Design

· stress distribution in bending

Wang & Salmon, Chapter 3

Concrete Beams 20 Lecture 22 Foundations Structures ARCH 331

Force Equations

- $C = 0.85 \, f'_c ba$
- $T = A_s f_v$
- where
 - $-f'_c$ = concrete compressive strength
 - a = height of stress block

$$-\beta_1$$
 = factor based on f'_0

$$-\beta_1$$
 = factor based on f'_c $\beta_1 = 0.85 - \left(\frac{f'_c - 4000}{1000}\right)(0.05) \ge 0.65$

 $0.85f_{c}^{\prime}$

фа/2

- -x = location to the n.a.
- b = width of stress block
- $-f_{v}$ = steel yield strength
- $-A_s$ = area of steel reinforcement

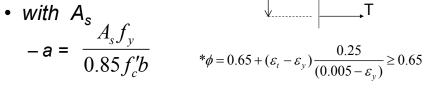
Lecture 22

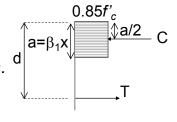
F2008abr

Over and Under-reinforcement

- over-reinforced
 - steel won't vield
- under-reinforced
 - steel will yield
- reinforcement ratio

- -bd $-use as a design estimate to find <math>A_s, b, d$
- max ρ is found with $\varepsilon_{\text{steel}} \ge 0.004$ (not ρ_{hal})


http://people.bath.ac.uk/abstji/concrete_video/virtual_lab.htm



F2008abi

Equilibrium

- T = C
- $M_n = T(d-a/2)$
 - -d = depth to the steel n.a.

$$-M_{u} \le \phi M_{n}$$
 $\phi = 0.9$ for flexure

$$-\phi M_n = \phi T(d-a/2) = \phi A_s f_v (d-a/2)$$

Concrete Beams 22 Lecture 22

ARCH 331

F2008abr

A_s for a Given Section

- several methods
 - guess a and iterate
 - 1. guess a (less than n.a.)

$$A_s = \frac{0.85 f_c' ba}{f_y}$$

3. solve for a from $M_u = \phi A_s f_y$ (d-a/2)

$$a = 2 \left(d - \frac{M_u}{\phi A_s f_v} \right)$$

4. repeat from 2. until a from 3. matches a in 2.

Concrete Beams 24

Foundations Structures ARCH 331

F2008abr

A_s for a Given Section (cont)

· chart method

– Wang & Salmon Fig. 3.8.1 R_n vs. ρ

1. calculate $R_n = \frac{M_n}{bd^2}$

2. find curve for f_c and f_v to get ρ

3. calculate A_s and a

• simplify by setting h = 1.1d

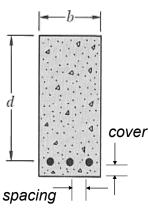
Concrete Beams 25 Lecture 22 Foundations Structures ARCH 331 F2008abr

Shells

Reinforcement

· min for crack control

• required $A_s = \frac{3\sqrt{f_c'}}{f_v}(bd)$


• not less than $A_s = \frac{200}{f_v} (bd)$

• A_{s-max} : $a = \beta_1(0.375d)$

typical cover
1.5 in, 3 in with soil

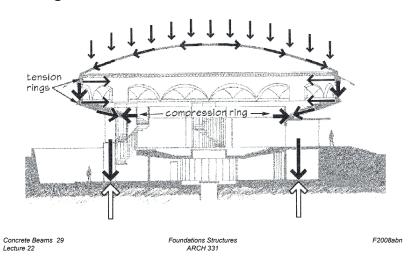
bar spacing

Concrete Beams 26 Foundations Structures
Lecture 22 ARCH 331

F2008abn

Annunciation Greek Orthodox Church

• Wright, 1956

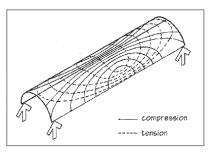

Concrete Beams 28 Lecture 22

Foundations Structures http://www.bluffton.edu/~sullivann ARCH 331

Annunciation Greek Orthodox Church

• Wright, 1956

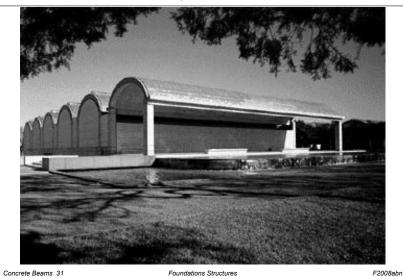
Lecture 22



Cylindrical Shells

- · can resist tension
- shape adds "depth"

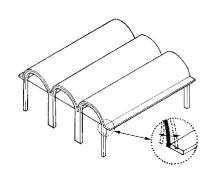
- TRANSVERSE FOLDING
 - FREEFORM
- not vaults
- · barrel shells


Concrete Beams 30 Lecture 22 FREEFORM

Foundations Structures

ARCH 331

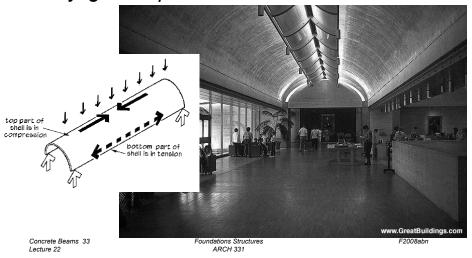
F2008abn

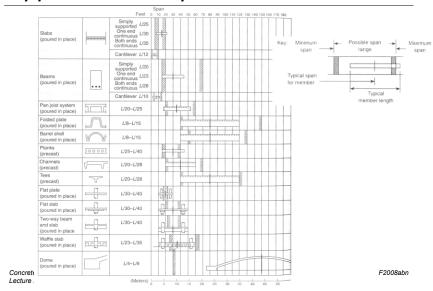

Kimball Museum, Kahn 1972

ARCH 331

Kimball Museum, Kahn 1972

• outer shell edges




Concrete Beams 32 Lecture 22 Foundations Structures ARCH 331

Kimball Museum, Kahn 1972

• skylights at peak

Approximate Depths

