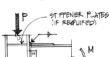
Architectural Structures: Form, Behavior, and Design

Arch 331 Dr. Anne Nichols Summer 2014

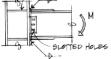
eighteen

steel construction bolts, welds & light gages


Steel Bolts & Welding 1 Lecture 18

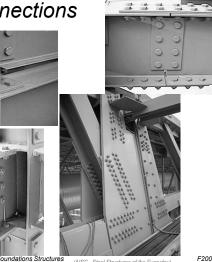
Architectural Structures ARCH 331 F2009abr

Connections


- needed to:
 - support beams by columns
 - connect truss members
 - splice beams or columns
- transfer load
- subjected to
 - tension or compression
 - shear
 - bending

(a) Framed beam (shear) connection.

 $e = Eccentricity; M = P \times e$


(b) Moment connection (rigid frame). M = Moment due to beam bending

Steel Bolts & Welding 2 Lecture 21 Foundations Structures ARCH 331 F2008abn

Bolts

• bolted steel connections

Steel Bolts & Welding 3 Lecture 21

ARCH 331 (AISC - Steel Structures of the Everyday)

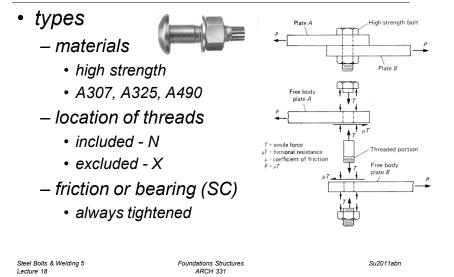
F2008abn

Welds

Steel Bolts & Welding 4

Lecture 21

welded steel connections



http://courses.civil.ualberta.ca Foundations Structures ARCH 331

F2008abn

1

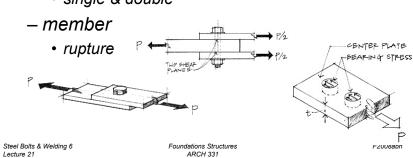
Bolts

Bolts

- rarely fail in bearing
- holes considered 1/8" larger
- $R_a \leq \frac{R_n}{\Omega} \quad R_u \leq \phi_v R_n$ • shear & tension $\phi_{v} = 0.75$
 - single shear or tension

$$R_n = F_n 2A_b$$

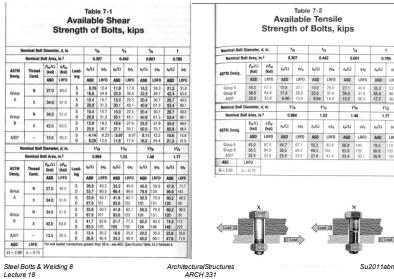
 $R_n = F_n A_h$


Steel Bolts & Welding 7 Lecture 18

Foundations Structures ARCH 331

Su2011abn

Bolted Connection Design


- considerations
 - bearing stress
 - yielding
 - shear stress • single & double

shear

tensior

Bolts

Bolts

bearing

$$\leq \frac{R_n}{\Omega}$$
 $R_u \leq \phi R_n$
 $\phi = 0.75$

- deformation is concern

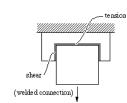
$$R_n = 1.2L_c tF_u \le 2.4 dtF_u$$

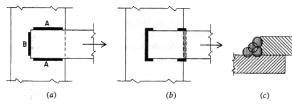
- deformation isn't concern

 $R_n = 1.5L_c t F_u \le 3.0 dt F_u$

– long slotted holes

$$R_n = 1.0L_c t F_u \le 2.0 dt F_u$$


 L_c – clear length to edge or next hole (ex. 1¹/₄", 3")


Steel Bolts & Welding 9 Lecture 18 Foundations Structures ARCH 331

 R_a

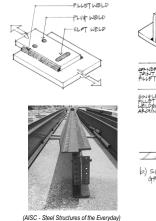
Welded Connection Design

- considerations
 - shear stress
 - yielding
 - rupture

Steel Bolts & Welding 11 Lecture 21

F2008abn

Su2011abr


Bolts

Av	ailabl		ed o		trendge	Dis	at E		Hole	es			A	Ta ip-C vailat	ritic: ole Sh	al Co ear S	trengt	ectio th, kip	s	Grou Bo	up E olts
		F _a ksi	Nominal Bolt Diameter, d, in.										11.0	on provide	1011000	-				_	
Hole Type	Edge Distance L _e , in.			5/8	3/4			7/8	3	1		1	19 1	Group B Bolts						1	
			$r_{\rm B}/\Omega$	¢r _n	$r_{\rm B}/\Omega$	¢r _n	r_n/Ω	φ r _n	r_n/Ω	\$ <i>F</i> ₀			16-0 m	Nominal Bolt Diameter, d, in.							
0.55	24 100	1 07	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD				5	/8	082.11	3/4	100.00	/a	5.0	1
STD	11/4	58 65 58	31.5 35.3 43.5	47.3	29.4 32.9 52.2	44.0 49.4 78.3	27.2 30.5 53.3	40.8 45.7 79.9	25.0 28.0 51.1	37.5 42.0 76.7			Minimum Group B Bolt Pretension, kips								
				53.0 65.3								Hole Type	Loading	24		35		49		64	
001	2	65	48.8	73.1	58.5	87.8	59.7	89.6	57.3	85.9				r_0/Ω	¢fa	$r_{\rm fl}/\Omega$	010	r_a/Ω	¢r _n	$r_{\rm p}/\Omega$	0
	11/4	58 65	28.3 31.7	42.4	26.1 29.3	39.2 43.9	23.9 26.8	35.9 40.2	20.7	31.0				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LR
SSLP	-	58	43.5	65.3	52.2	78.3	50.0	75.0	23.2	34.7			S	5.42	8.14	7.91	11.9	11.1	16.6	14.5	21
	2	65	48.8	73.1	58.5	87.8	56.1	84.1	52.4	78.6		STD/SSLT	D	10.8	16.3	15.8	23.7	22.1	33.2	28.9	43
	11/4	58 65	29.4 32.9	44.0 49.4	27.2 30.5	40.8 45.7	25.0 28.0	37.5	21.8	32.6		OVS/SSLP	S	4.62	6.92	6.74	10.1 20.2	9.44	14.1 28.2	12.3	18
OVS		58	43.5	65.3	52.2	45.7	51.1	76.7	47.9	36.6			S	9.25	13.8	13.5	8.31	18.9	11.6	24.7	36
	2	65	48.8	73.1	58.5	87.8	57.3	85.9	53.6	80.4		LSL	D	7.60	11.4	11.1	16.6	15.5	23.3	20.3	30
	11/4	58 65	16.3 18.3	24.5 27.4	10.9	16.3 18.3	5.44	8.16 9.14	-	-		-		Nominal Bolt Diameter, d, in.							
LSLP		58	42.4	63.6	37.0	55.5	31.5	47.3	26.1	39.2				1	1 ¹ /8 1 ¹ /4 1 ³ /8 1 ¹ /2						
	2	65	47.5	71.3	41.4	62.2	35.3	53.0	29.3	43.9				1.54		Minimum	Group B	Bolt Prete	nsion, kips		
	11/4	58 65	26.3 29.5	39.4 44.2	24.5 27.4	36.7	22.7	34.0	20.8	31.3 35.0		Hole Type	Loading	8	10	1	02	1	21	1	148
LSLT	2	58	36.3	5.3 54.4	43.5	65.3	44.4	66.6	42.6	63.9				r_n/Ω	¢r _a	$r_{\rm g}/\Omega$	¢r _n	r_{a}/Ω	ofn	$r_{\rm n}/\Omega$	0
STD. SSLT.		65	40.6	60.9	48.8	73.1	49.8	74.6	47.7	71.6				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LR
STD, SSLT, SSLP. OVS.	Le 2 Le not	58 65	43.5 48.8	65.3 73.1	52.2 58.5	78.3	60.9 68.3	91.4 102	69.6 78.0	104		STD/SSLT	S	18.1	27.1	23.1	34.6	27.3	41.0	33.4	50
LSLP					1000				122111	87.0		STD/SSLI	D	36.2	54.2	46.1	69.2	54.7	82.0	66.9	100
LSLT	$L_{\theta} \ge L_{\theta} tut$	58 65	36.3 40.6	54.4 60.9	43.5 48.8	65.3 73.1	50.8 56.9	76.1 85.3	58.0 65.0	97.5		OVS/SSLP	S	15.4 30.8	23.1	19.6 39.3	29.4	23.3 46.6	34.9 69.7	28.5 57.0	42
		STD,					1,13	2					S	12.7	19.0	16.2	24.2	40.0	28.7	23.4	35
Edge distance for full bearing strength $L_{\sigma} \ge L_{\sigma, tut}^{a}$, in.		SSLT, LSLT	1 ⁵ /8		115/16		21/4		25	2%16		LSL	D	25.3	38.0	32.3	48.4	38.3	57.4	46.9	70
		OVS	111/16		2	2		2 ⁵ /16		25/8		STD = standar	d hole					S = single	shear		1
		SSLP	111/16 2		25/16 211/			1/16		OVS = oversized hole D = double shear											
		LSLP	21	/16	2	27/18 2		7/8 31/4		/4			SLT = short-slotted hole transverse to the line of force SLP = short-slotted hole parallel to the line of force								
STD = stan	dard hole t-slotted hole	ncineted	transuare	e te the lie	e el force					.08	ns S		otted hole trans				arce				
SSLP = shor	t-slotted hole									1.00	CH 3	Hole Type	ASD	LRFD			t values ass			ller has bee	en prov
OVS = over	sized hole -slotted hole									255		STD and SSLT	Ω = 1.50	φ = 1.00	or boits I	ave been a	dded to distr	ribute loads i	in the fillers.		irs

Welded Connection Design

- weld terms
 - butt weld
 - fillet weld
 - plug weld
 - throat
- field welding
- shop welding

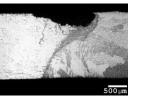
Steel Bolts & Welding 12 Lecture 21

Foundations Structures ARCH 331 F2008abn

GROOVE JOIN

AP JOINT-

Welded Connection Design

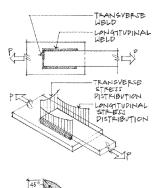

• weld process

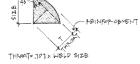
- melting of material
- melted filler electrode
- shielding gas / flux
- potential defects

• weld materials

- E60XX
- E70XX F_{FXX} = 70 ksi

Welded Connection Design


- shear failure assumed
- throat
 - *T* = 0.707 x weld size
- area


Steel Bolts & Welding 14

shear

Lecture 18

- -A = T x length of weld
- weld metal generally stronger than base metal (ex. F_y = 50 ksi)

Su2011abr

Steel Bolts & Welding 13 Lecture 21 Foundations Structures ARCH 331

- FAFB

--- CONVEX ---- TOE

LEG SIZE

CONCAVE

1001

F2008abn

Welded Connection Design

minimum

- table

- maximum
 - material thickness (to 1/4")
 - 1/16" less
- min. length – 4 x size min.

TABLE Minimum Size o							
Material Thickness of	Minimum Size of						
Thicker Part Joined, in. (mm)	Fillet Weld[a] in. (mm)						
To ¹ / ₄ (6) inclusive	18 (3)						
Over ¹ / ₄ (6) to ¹ / ₂ (13)	3/16 (5)						
Over ¹ / ₂ (13) to ³ / ₄ (19)	1/4 (6)						
Over ³ / ₄ (19)	5/16 (8)						

ion of fillet welds. Single pass welds must be used

THRAT WELD SIZE

–≥1 ½"

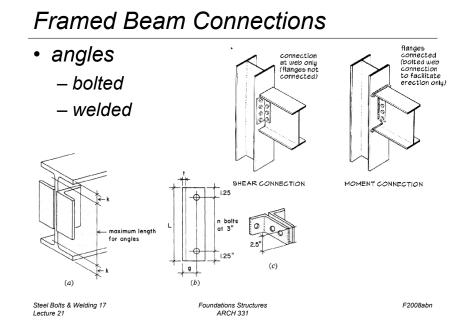
Steel Bolts & Welding 15 Lecture 18 Foundations Structures ARCH 331 Su2011abn

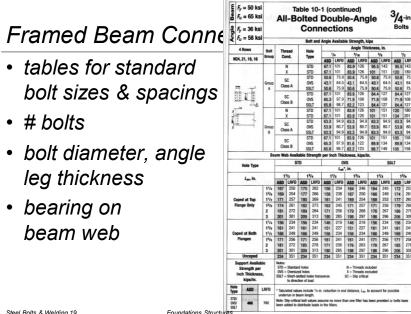
•	
$R_a \leq \frac{R_n}{\Omega}$	$R_u \le \phi R_n$ $\phi = 0.75$

 $R_n = 0.6F_{EXX} Tl = Sl$

Welded Connection Design

area

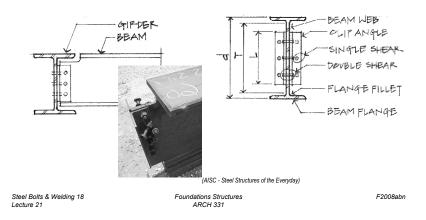

Foundations Structures


ARCH 331

for ϕS

	Strength of Fil							
per inch of weld (ϕS)								
Weld Size	E60XX	E70XX						
(in.)	(k/in.)	(k/in.)						
3/16	2.39	4.18						
1⁄4	4.77	5.57						
5/16	5.97	6.96						
3/8	7.16	8.35						
7/16	5.57	9.74						
1/2	8.35	11.14						
5/8	11.93	13.92						
3/4	14.32	16.70						
	ering increase i rged arc weld p							

Steel Bolts & Welding 16 Lecture 18 Foundations Structures ARCH 331 Su2011abn


ARCH 331

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

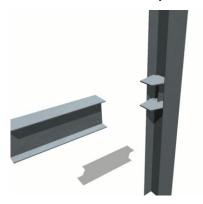
Steel Bolts & Welding 19 Lecture 18

Framed Beam Connections

- terms
 - coping

Framed Beam Connections

• welded example (shear)


(AISC - Steel Structures of the Everyday) Foundations Structures ARCH 331

Steel Bolts & Welding 20 Lecture 21

F2008abn

Framed Beam Connections

• welded moment example

(AISC - Steel Structures of the Everyday)

Steel Bolts & Welding 21 Lecture 21 Foundations Structures

Framed Beam Connections

• welded/bolted moment example

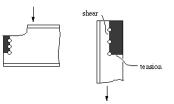
Steel Bolts & Welding 23 Lecture 21 (AISC - Steel Structures of the Everyday) Foundations Structures ARCH 331

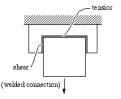
F2008abn

F2008abn

Framed Beam Connections

• welded/bolted moment example




(AISC - Steel Structures of the Everyday)

Steel Bolts & Welding 22 Lecture 21 Foundations Structures ARCH 331 F2008abn

Beam Connections

- LRFD provisions
 - shear yielding
 - shear rupture
 - block shear rupture
 - tension yielding
 - tension rupture
 - local web buckling
 - lateral torsional buckling

Steel Bolts & Welding 24 Lecture 21 Foundations Structures ARCH 331 F2008abn

$\frac{\textit{Beam Connections}}{R_n = 0.6F_uA_{nv} + U_{bs}F_uA_{nt} \le 0.6F_yA_{gv} + U_{bs}F_uA_{nt}}$

- where U_{bs} is 1 for uniform tensile stress

Figure 2-1. Block Shear Rupture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)

block shear rupture

Steel Bolts & Welding 25 Lecture 18

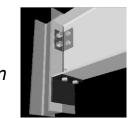
Steel Bolts & Welding 27

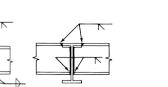
Lecture 21

Foundations Structures ARCH 331

Other Connections

Figure 2-14. Tension Fracture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)


tension rupture


Su2011abn

http://courses.civil.ualberta.ca F2008abn

Other Connections

- seated beam
- continuous
 - beam to column
 - beam to beam

Steel Bolts & Welding 26 Lecture 21

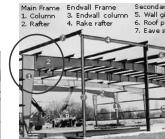
Foundations Structures ARCH 331

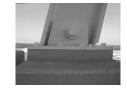
F2008abn

Other Connections

- rigid frame knees
- gussets & joints

(AISC - Steel Structures of the Everyday)

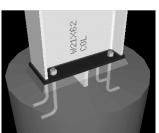

Steel Bolts & Welding 28


Lecture 21

Foundations Structures ARCH 331

F2008abn

Foundations Structures ARCH 331


Other Connections

- base plates
 - anchor bolts
 - bearing on steel
 - bending of plate

http://courses.civil.ualberta.ca

Steel Bolts & Welding 29 Lecture 21

Foundations Structures ARCH 331

F2008abn